Implementasi Pull Message dengan menggunakan Restful Web Service pada komunikasi Wireless Sensor

Authors

  • Rakhmad Arif Hidayatullah Teknik Informatika, Universitas Muhammadiyah Malang, Malang
  • Zamah Sari Teknik Informatika, Universitas Muhammadiyah Malang, Malang
  • Mahar Faiqurahman Teknik Informatika, Universitas Muhammadiyah Malang, Malang

DOI:

https://doi.org/10.26594/register.v3i2.699

Keywords:

Arduino, Pull Message, Restful Web Service, Wireless Sensor Network, WSN, IoT, nirkabel, wireless

Abstract

 

Wireless Sensor Network (WSN) merupakan jaringan dengan skalabilitas yang sangat tinggi, dan memiliki jumlah sensor node yang sangat banyak. Untuk efisiensi biaya, sensor node banyak diterapkan dengan menggunakan Arduino. Arduino merupakan papan rangkaian elektronik open source yang di dalamnya terdapat chip mikrokontroler. Dengan keterbatasan resource yang dimiliki oleh Arduino, efisiensi komputasi yang ada di dalam sensor node harus diperhatikan. Salah satunya berkaitan dengan proses komunikasi dan pengiriman data dari sensor node ke sink node (gateway). Restful web service merupakan salah satu protokol komunikasi yang memanfaatkan HTTP. Protokol ini dikenal memiliki efisiensi yang cukup tinggi, di samping karena interoperabilitasnya untuk digunakan pada berbagai platform. Dalam makalah ini akan diuraikan hasil dari implementasi model pull message dengan menggunakan restful web service, pada komunikasi antara sink node (gateway) dengan sensor node, di dalam infrastruktur WSN. Dalam penelitian yang dilakukan, digunakan mikrokontroler Arduino sebagai sensor node, dan Raspberry Pi sebagai sink node. Selain itu juga diimplementasikan mekanisme thread untuk menangani multi-process yang berjalan di dalam sensor node. Hasil dari pengujian menunjukan bahwa interval sensing, ukuran data, dan jumlah sink node yang melakukan request, tidak begitu berpengaruh terhadap ketersedian free memory heap pada sensor node. Sedangkan ukuran dari data hasil sensing yang dikirim mempunyai pengaruh terhadap request-response time.

 

 

 

 

Wireless Sensor Network (WSN) infrastructure has very high scalability, which is composed of a large number of the sensor node. For cost efficiency, sensor node broadly deployed using Arduino. Arduino is the open-source electronic circuit board, which has embedded microcontroller chipset. Due to limited resource, the efficiency of computation inside Arduino must be considered during the development of sensor node. One of them is related to communication and data delivery process between the sensor node and sink node. Restful Web Service is one of communication protocol framework which uses HTTP protocol and claimed to be the most efficient Web Service. As well as the other web services, Restful also support high interoperability of communication. In this paper we describe the implementation of pull message mechanism on WSN communication between the sensor node and sink node, using Restful Web Service. We implemented sensor node using Arduino board, and sink node using Raspberry Pi. We also used thread mechanism to handle multi-process that run in the sensor node. The results of the study show that the interval time in sensing, data size, and the number of sink node which makes requests, didn’t give too much influence in the availability of free memory heap in the sensor node. While the size of sensor data that was sent to sink node have an influence on a request-response time.

References

Barroca, N., M.Borges, L., J.Velez, F., Monteiro, F., Górski, M., & Castro-Gomes, J. (2013). Wireless sensor networks for temperature and humidity monitoring within concrete structures. Construction and Building Materials, 40(2013), 1156-1166.


Burgstahler, D., Lampe, U., Richerzhagen, N., & Steinmetz, R. (2013). Push vs. Pull: An Energy Perspective (Short Paper). Service-Oriented Computing and Applications (SOCA), 2013 IEEE 6th International Conference on (pp. 190-193). Koloa: IEEE.


Chaudhary, D. D., Nayse, S. P., & Waghmare, L. M. (2011). Application of wireless sensor networks for greenhouse parameter control in precision agriculture. International Journal of Wireless & Mobile Networks (IJWMN), 3(1), 140-149.


Ferdoush, S., & Li, X. (2014). Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications. Procedia Computer Science, 34(2014), 103-110.


Georgitzikis, V., Akribopoulos, O., & Chatzigiannakis, I. (2012). Controlling Physical Objects via the Internet using the Arduino Platform over 802.15.4 Networks. IEEE Latin America Transactions, 10(3), 1686-1689.


Hamad, H., Saad, M., & Abed, R. (2010). Performance Evaluation of RESTful Web Services for Mobile Devices. International Arab Journal of e-Technology, 1(3), 72-78.


Käbisch, S., Peintner, D., Heuer, J., & Kosch, H. (2010). Efficient and Flexible XML-Based Data-Exchange in Microcontroller-Based Sensor Actor Networks. Advanced Information Networking and Applications Workshops (WAINA), 2010 IEEE 24th International Conference on (pp. 508-513). Perth: IEEE.


Leguay, J., Lopez-Ramos, M., Jean-Marie, K., & Conan, V. (2008). An efficient service oriented architecture for heterogeneous and dynamic wireless sensor networks. Local Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on (pp. 740-747). Montreal: IEEE.


Maarif, A. F. (2016). System Monitoring And Controlling Water Nutrition aquaponics Using Arduino Uno Based Web Server. Kinetik, 1(1), 39-46.


Othman, N. Y., Glitho, R. H., & Khendek, F. (2007). The Design and Implementation of a Web Service Framework for Individual Nodes in Sinkless Wireless Sensor Networks. Computers and Communications, 2007. ISCC 2007. 12th IEEE Symposium on (pp. 941-947). Las Vegas: IEEE.


Sawidin, S., Melo, O. E., & Marsela, T. (2015). Monitoring Kontrol Greenhouse untuk Budidaya Tanaman Bunga Krisan dengan LabView. JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi), 4(4), 236-242.

Downloads

Published

2017-07-01

How to Cite

[1]
R. A. Hidayatullah, Z. Sari, and M. Faiqurahman, “Implementasi Pull Message dengan menggunakan Restful Web Service pada komunikasi Wireless Sensor”, regist. j. ilm. teknol. sist. inf., vol. 3, no. 2, pp. 65–74, Jul. 2017.

Issue

Section

Article