Metode Bulirsch-Stoer pada Model Predator-Prey Penangkapan Ikan dengan Perilaku Schooling

Rizal Dian Azmi(1*),

(1) Program Studi Pendidikan Fakultas Pendidikan dan Ilmu Keguruan Matematika Universitas Muhammadiyah Malang
(*) Corresponding Author
Rizal Dian Azmi

Abstract


Dalam bidang matematika, banyak model yang dikembangkan untuk memprediksi perubahan dalam bidang perikanan. Salah satu model yang sering digunakan untuk menganalisis interaksi ikan beserta biota laut lainnya adalah model predator-prey. Penelitian sebelumnya telah menganalisis dan membuat simulasi model predator-prey dengan Metode Runge-Kutta. Artikel ini membandingkan Metode Runge-Kutta dan metode Bulirsch–Stoer. Hasil yang diperoleh memberikan kesimpulan bahwa metode Bulirsch-Stoer yang digunakan masih perlu dikembangkan karena hasil yang diberikan metode ini tidak konvergen.


Keywords


Metode Bulirsch-Stoer, Model Predator-Prey, Metode Runge-Kutta

Full Text:

ARTICLE

References


Agarwal, M., & Pathak, R. (2017). Harvesting and Hopf Bifurcation in a Prey-Predator Model with Holling Type IV Functional Response. International Journal of Mathematics and Soft Computing, 2(1), 99. https://doi.org/10.26708/ijmsc.2012.1.2.12

Ang, T. K., & Safuan, H. M. (2019). Chaos , Solitons and Fractals Harvesting in a toxicated intraguild predator – prey fishery model with variable carrying capacity. Chaos, Solitons and Fractals: The Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 126, 158–168. https://doi.org/10.1016/j.chaos.2019.06.004

Baca¨er, N. (2011). A Short History of Mathematical Population Dynamics (pp. 35–39). Springer-Verlag London Limited. https://doi.org/10.1007/978-0-85729-115-8

C. Woodford, & Phillips, C. (2012). Numerical Methods with Worked Examples: Matlab Edition Second Edition (2nd ed.). Springer Science+Business Media.

John H. Mathews, K. D. F. (1999). Numerical Methods Using Matlab Third Edition. Upper Saddle River, NJ: Prentice Hall.

Kiusalaas, J. (2010). NUMERICAL METHODS IN ENGINEERING WITH MATLAB Second Edition. New York: Cambridge University Press.

Manna, D., Maiti, A., & Samanta, G. P. (2018). Analysis of a predator-prey model for exploited fish populations with schooling behavior. Applied Mathematics and Computation, 317, 35–48. https://doi.org/10.1016/j.amc.2017.08.052

Mishra, P., Raw, S. N., & Tiwari, B. (2019). Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators. Chaos, Solitons and Fractals, 120, 1–16. https://doi.org/10.1016/j.chaos.2019.01.012

Munaf, D. R., & Windari, R. (2015). PENGEMBANGAN SUMBER DAYA KELAUTAN DALAM INDUSTRI MARITIM DUNIA. Jurnal Sosioteknologi, 14(2), 154.

Skalski, G. T., & Gilliam, J. F. (2001). Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology, 82(11), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2




DOI: https://doi.org/10.26594/jmpm.v5i2.2047

Article metrics

Abstract Abstract views : 0times
ARTICLE views : 0 times

Refbacks

  • There are currently no refbacks.




Indexed by:

       

Flag Counter

Creative Commons License
Jurnal Matematika dan Pendidikan Matematika by JMPM is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://www.journal.unipdu.ac.id/index.php/jmpm/