Query Expansion menggunakan Word Embedding dan Pseudo Relevance Feedback

Evan Tanuwijaya
Safri Adam
Mohammad Fatoni Anggris
Agus Zainal Arifin

Abstract


Kata kunci merupakan hal terpenting dalam mencari sebuah informasi. Penggunaan kata kunci yang tepat menghasilkan informasi yang relevan. Saat penggunaannya sebagai query, pengguna menggunakan bahasa yang alami, sehingga terdapat kata di luar dokumen jawaban yang telah disiapkan oleh sistem. Sistem tidak dapat memproses bahasa alami secara langsung yang dimasukkan oleh pengguna, sehingga diperlukan proses untuk mengolah kata-kata tersebut dengan mengekspansi setiap kata yang dimasukkan pengguna yang dikenal dengan Query Expansion (QE). Metode QE pada penelitian ini menggunakan Word Embedding karena hasil dari Word Embedding dapat memberikan kata-kata yang sering muncul bersama dengan kata-kata dalam query. Hasil dari word embedding dipakai sebagai masukan pada pseudo relevance feedback untuk diperkaya berdasarkan dokumen jawaban yang telah ada. Metode QE diterapkan dan diuji coba pada aplikasi chatbot. Hasil dari uji coba metode QE yang diterapkan pada chatbot didapatkan nilai recall, precision, dan F-measure masing-masing 100%; 70% dan 82,35 %. Hasil tersebut meningkat 1,49% daripada chatbot tanpa menggunakan QE yang pernah dilakukan sebelumnya yang hanya meraih akurasi sebesar 68,51%. Berdasarkan hasil pengukuran tersebut, QE menggunakan word embedding dan pseudo relevance feedback pada chatbot dapat mengatasi query masukan dari pengguna yang ambigu dan alami, sehingga dapat memberikan jawaban yang relevan kepada pengguna.

 

 

Keywords are the most important words and phrases used to obtain relevant information on content. Although users make use of natural languages, keywords are processed as queries by the system due to its inability to process. The language directly entered by the user is known as query expansion (QE). The proposed QE in this research uses word embedding owing to its ability to provide words that often appear along with those in the query. The results are used as inputs to the pseudo relevance feedback to be enriched based on the existing documents. This method is also applied to the chatbot application and precision, and F-measure values of the results obtained were 100%, 70%, 82.35% respectively. The results are 1.49% better than chatbot without using QE with 68.51% accuracy. Based on the results of these measurements, QE using word embedding and pseudo which gave relevance feedback in chatbots can resolve ambiguous and natural user’s input queries thereby enabling the system retrieve relevant answers.


Keywords


Pseudo Relevant Feedback; Query Expansion; Word Embedding

Full Text:

PDF

References


Agung, G. (2011, April 20). 17 Pertanyaan Yang Sering Ditanyakan Ibu Hamil. Retrieved from Dr. Gregorius Agung, SpOG: http://greg-spog.com/kebidanan-kandungan/17-pertanyaan-yang-sering-ditanyakan-ibu-hamil/

Buckley, C., Salton, G., & Allan, J. (1994). The Effect of Adding Relevance Information in a Relevance Feedback Environment. SIGIR ’94 (pp. 292-300). London: Springer.

Dalpiaz, F., Ferrari, A., Franch, X., & Palomares, C. (2018). Natural Language Processing for Requirements Engineering: The Best Is Yet to Come. IEEE Software, 35(5), 115-119.

Dierk, S. F. (1972). The SMART retrieval system: Experiments in automatic document processing. IEEE Transactions on Professional Communication, PC-15(1), 17.

Domarco, D., & Iswari, N. M. (2017). Rancang Bangun Aplikasi Chatbot Sebagai Media Pencarian Informasi Anime Menggunakan Regular Expression Pattern Matching. ULTIMATICS: Jurnal Ilmu Teknik Informatika, 9(1), 19-24.

Fitriana, D. A. (2016, September 1). Gizi Seimbang Ibu Hamil. Retrieved from Jurusan Gizi Fakultas Kedokteran Universitas Brawijaya: http://gizi.fk.ub.ac.id/gizi-seimbang-ibu-hamil/

Indarini, N. (2018, Juli 17). Kumpulan Pertanyaan Seputar 'Bolehkah Ibu Hamil Makan...'. Retrieved from HaiBunda.com: https://www.haibunda.com/kehamilan/20180716143654-49-23095/kumpulan-pertanyaan-seputar-bolehkah-ibu-hamil-makan

Kuzi, S., Shtok, A., & Kurland, O. (2016). Query Expansion Using Word Embeddings. CIKM '16 Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 1929-1932). Indianapolis, Indiana, USA: ACM.

Lee, H.-Y., & Lee, L.-S. (2014). Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(1), 80-94.

Liu, Q., Huang, H., Lut, J., Gao, Y., & Zhang, G. (2017). Enhanced word embedding similarity measures using fuzzy rules for query expansion. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Naples, Italy: EEE.

Ludviani, R., Hayati, K. F., Arifin, A. Z., & Purwitasari, D. (2015). Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE). Jurnal Buana Informatika, 6(3), 203-212.

Mothe, J., Savoy, J., Kamps, J., Pinel-Sauvagnat, K., Jones, G., Juan, E. S., . . . Ferro, N. (2015). Experimental IR Meets Multilinguality, Multimodality, and Interaction. 6th International Conference of the CLEF Association (CLEF'15). Toulouse, France: Springer.

Nie, L., Jiang, H., Ren, Z., Sun, Z., & Li, X. (2016). Query Expansion Based on Crowd Knowledge for Code Search. IEEE Transactions on Services Computing, 9(5), 771-783.

Ooi, J., Ma, X., Qin, H., & Liew, S. C. (2015). A survey of query expansion, query suggestion and query refinement techniques. 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS). Kuantan, Malaysia: IEEE.

Putra, F. N., Effendi, A., & Arifin, A. Z. (2018). Pembobotan Kata berdasarkan Kluster untuk Peringkasan Otomatis Multi Dokumen. Jurnal Linguistik Komputasional, 1(1), 17-22.

Rattinger, A., Goff, J.-M. L., & Guetl, C. (2018). Local Word Embeddings for Query Expansion based on Co-Authorship and Citations. BIR 2018 Workshop on Bibliometric-enhanced Information Retrieval (pp. 46-53). Grenoble, France: CEUR-WS.

Reshma, E. U., & Remya, P. C. (2017). A review of different approaches in natural language interfaces to databases. 2017 International Conference on Intelligent Sustainable Systems (ICISS). Palladam, India: IEEE.

Şenel, L. K., Utlu, İ., Yücesoy, V., Koç, A., & Çukur, T. (2018). Semantic Structure and Interpretability of Word Embeddings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(10), 1769 -1779.

Singh, R., Paste, M., Shinde, N., Patel, H., & Mishra, N. (2018). Chatbot using TensorFlow for small Businesses. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). Coimbatore, India: IEEE.

Vaidyanathan, R., Das, S., & Srivastava, N. (2015, February 18). Query Expansion Strategy based on Pseudo Relevance Feedback and Term Weight Scheme for Monolingual Retrieval. Retrieved from arXiv: https://arxiv.org/abs/1502.05168

Wang, X., Fang, H., & Zhai, C. (2008). A Study of Methods for Negative Relevance Feedback. SIGIR '08 Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 219-226). Singapore: ACM.

Xu, B., Lin, H., Lin, Y., Yang, L., & Xu, K. (2018). Improving Pseudo-Relevance Feedback With Neural Network-Based Word Representations. IEEE Access, 6, 62152-62165.

Yan, R., & Gao, G. (2017). Pseudo-Based Relevance Analysis for Information Retrieval. 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). Boston, MA, USA: IEEE.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural Language Processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55 -75.




DOI: https://doi.org/10.26594/register.v5i1.1385

Article metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.



Indexed in:

                                   


 

Creative Commons License
Register: Jurnal Ilmiah Teknologi Sistem Informasi is licensed under a Creative Commons Attribution 4.0 International License.