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Engineering optimization problems often involve nonlinear objective 

functions, which can capture complex relationships and dependencies 

between variables. This study focuses on a unique nonlinear mathematics 

programming problem characterized by a subset of variables that can only 

take discrete values and are linearly separable from the continuous variables. 

The combination of integer variables and non-linearities makes this problem 

much more complex than traditional nonlinear programming problems with 

only continuous variables. Furthermore, the presence of integer variables can 

result in a combinatorial explosion of potential solutions, significantly 

enlarging the search space and making it challenging to explore effectively. 

This issue becomes especially challenging for larger problems, leading to long 

computation times or even infeasibility. To address these challenges, we 

propose a method that employs the "active constraint" approach in 

conjunction with the release of nonbasic variables from their boundaries. This 

technique compels suitable non-integer fundamental variables to migrate to 

their neighboring integer positions. Additionally, we have researched 

selection criteria for choosing a nonbasic variable to use in the integerizing 

technique. Through implementation and testing on various problems, these 

techniques have proven to be successful. 
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1. Introduction 

An optimization problem is based on a collection of parameters and independent variables, which often 

include conditions on the acceptable values of the variables. These limitations are referred to as problem 

constraints. Another essential aspect of the optimization problem is the "good" measure, also known as 

the objective function, which depends on the issue variables. The objective function represents what 

needs to be optimized. To achieve the best value for the objective function, a collection of variable values 

must satisfy the optimization problem. A standard expression commonly used to represent and 

facilitate problem-solving for optimization issues involves the use of constraint function 'g' and 

objective function 'f,' both of which are real-valued scalar functions and frequently employed in this 

context. 

The algorithm developed, based on the feasible neighborhood search strategy, presents an 

innovative approach to solving mixed-integer nonlinear programming problems. By carefully 

considering the interaction between integer variables and nonlinear functions, this algorithm aims to 

efficiently explore the solution space and discover optimal or near-optimal solutions. The strategy 
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involves iteratively examining the neighborhood of feasible solutions and updating the current solution 

using local search procedures. This approach not only considers the objective function but also ensures 

adherence to the problem's constraints. Many optimization problems involve the inclusion of integer or 

discrete variables. These variables can be used in decision models with binary options, such as 

determining investments in portfolio problems, or they can represent whole units, such as the number 

of employees required. Additionally, continuous variables like labor time and manufacturing volume 

might also be present. Nonlinearity may arise in optimization models when dealing with physical 

qualities, such as fluid concentration balancing, or when addressing problems related to economies of 

scale. The Mixed Integer Nonlinear Programming (MINLP) model serves as the optimization model for 

nonlinear problems that incorporate both discrete and continuous variables. 

In general, MINLP problems refer to mathematical formulations that combine discrete and 

continuous variables with nonlinearity in both constraints and the objective function. This paper focuses 

on a specific subclass of MINLP issues, where discrete variables are distinguished from continuous 

variables based on their linearity and dependencies. When expressed in algebraic form, a MINLP issue 

takes on the following most basic form: 

Min 𝑍 = 𝑓 (𝑥, 𝑦) 
𝑠. 𝑡. 𝑔𝑗(𝑥, 𝑦) ≤ 0   𝑗 ∈ 𝐽 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 

 (1) 

In the equation system above, we have nonconvex functions denoted as f(·) and g(·), with inequalities 

represented by the index J. The variable x is continuous and y represents discrete variables. For 

simplicity, we assume that the set X is a convex compact set, possibly taking a form such as 

 The discrete set Y belongs to a polyhedral integer set, 

, and is limited to 0-1 values for a large number of applications, 

.  It is important to note that f(·), g(·) the objective function f(·) and constraint function g(·) 

are predominantly linear in y. For instance, they may involve logic constraints and fixed cost charges. 

The MINLP algebraic form reveals that models may consist of convex or nonconvex functions. 

For Convex MINLP models, various methods can be employed to address the issues [1], including 

nonlinear-programming-based branch-and-bound [2]–[4], multi-tree methods (outer approximation 

[5][6], Generalized Benders Decomposition [7], extended cutting-plane method [8]), single-tree methods 

(LP/NLP-based B&B) [9], and presolve techniques (coefficient tightening for MINLP) [10]. Cutting-plane 

methods, such as mixed-integer rounding cuts, perspective cuts, disjunctive cuts, Gomory cuts, and lift-

and-project cuts, are popular for solving convex MINLP models [1]. A comprehensive review of 

techniques applied to convex MINLP models can be found in [11]–[14]. 

Nonconvex MINLP models present challenges due to the presence of nonconvexities in both 

objective functions and constraints. Consequently, even when integrality restrictions are relaxed on 

integer decision variables, obtaining a convex relaxation efficiently in a B&B framework for the resulting 

nonconvex feasible region requires additional effort [1]. Despite the added complexity of approximating 

an efficient convex relaxation for the feasible region of an MINLP, many techniques specialized for 

MINLPs yield numerous local optima without guaranteeing global optimality [1]. Popular techniques 

used to solve nonconvex MINLP models include piecewise linear modeling, generic relaxation 

strategies, spatial B&B, and relaxation of structured nonconvex sets [11]–[15]. Heuristic techniques are 

also widely employed to solve nonconvex MINLP models [1], such as mixed-integer-based rounding, 

feasibility pump, undercover, relaxation enforced neighborhood search, and diving. 

Engineers have developed the mathematical approach of optimization to create products and 

buildings inexpensively and effectively [16]. Numerous optimization techniques, such as Genetic 

Algorithms (GA)[17], Generalized Reduced Gradient (GRG), and Sequential Quadratic Programming 

(SQP), have been established to handle a range of issues [18]. To effectively utilize these methodologies, 

several tools like Matrix Laboratory (MATLAB) and Microsoft Excel Solver have been employed[19]. 

GRG and SQP are recognized as two of the top deterministic optimization techniques, as revealed in 

comparative research [20]. Conversely, GA, which is based on evolutionary principles inspired by 

nature, is considered the best stochastic approach [21]–[23]. 

The challenge of optimizing a cost function while solving an equation system arises in 

optimization problems with linear equality constraints. The reduced gradient approach, for example 

    X = {x | xR
n
, Dx< d, x

L
< x < x

U
};

    Y = {y | yZm, Ay < a}
   y {0,1}m
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[24], solves a series of subproblems with implicitly lowered variables. This is one of several algorithms 

established for tackling linearly-constrained optimization problems. These simplified issues are created 

by expressing a subset of variables, referred to as the "basic" variables, in terms of additional variables 

under the influence of linear constraints. The reduced gradient approach, developed by Wolfe [25], can 

be seen as an expansion of the conventional simplex method. The convex simplex approach is known 

to fail by converging to a non-optimal point. Reduced gradient algorithms are applied in engineering 

difficulties, such as water distribution [26] power flow [27], machine learning [28], and optimal control 

[29]. In this study, the reduced gradient approach has been suggested as one of the key methods for 

tackling limited optimization issues. 

The MINLP model finds numerous applications in the process industry, management science, 

finance, engineering fields, and more. It covers concerns in process flow diagrams, portfolio choice, 

batch processing in chemical engineering (which entails mixing, centrifuge separation, and reaction), 

and the best way to construct water or gas transmission networks. It is also relevant in the fabrication 

of VLSI chips, automobiles, and airplanes [30] [31], showcasing a wide array of MINLP applications. 

Research and development in MINLP solver technology have been driven by demands in a wide range 

of fields, especially for tackling large-scale, highly nonlinear, and combinatorial problems. Various 

approaches have been explored in the literature for solving MINLPs since the early 1980s, including 

Outer Approximation (OA) methods [24][32], Extended Cutting Plane methods [8][33], Branch-and-

Bound (B&B) [34][35], and Generalised Bender's Decomposition (GBD) [36][37]. These methods often 

rely on the sequential resolution of closely connected NLP issues. By removing the integrality 

restrictions for discrete variables, B&B, for instance, creates a pure continuous NLP issue (also known 

as the relaxed MINLP or RMINLP). Additionally, each node of the growing B&B tree represents an 

RMINLP solution with modified limits on the discrete variables. In response to a challenge stated by 

Murtagh and Sugden [1], Vassilev and Enova [38] present an approximation approach.  

2. Materials and Methods 

This work has focused on a group of algorithms in which the search direction of the active constraint 

surface is defined to lie within the domain of the Z matrix, which is orthogonal to the conventional 

constraint matrix. Hence, Z is represented as an n x s matrix, satisfying the condition 𝑨̑𝒁 = 𝟎, when 

𝑨̑𝒙 = 𝒃̑ for the current set of n-s active constraints. 

The application of the Generalized Reduced Gradient method to solve the model starts by 

employing the Langrange function, and then follows the steps outlined in the algorithm. 

The algorithm proceeds as follows: 

Step 1.  (Convergence test in the current subspace). If ||h|| > TOLRG, proceed to step 3. 

Step 2.  ("PRICE" - estimate Lagrange multiplier, add one superbase). 

a) Calculate 𝜆 = gN – NT 𝜋 

b) Choose 𝜆𝑞1
< −TOLDJ (𝜆𝑞2

> +TOLDJ), where  is the greatest element corresponding to 

variables in its upper (lower) limit. If not, STOP; Kuhn-Tucker's conditions are obeyed, and 

an optimal solution has been obtained.  

c) If not, 

(i) Choose q = q1 or q2 accordingly with | 𝜆q1 | = max (|𝜆q1|,| 𝜆q2|); 

(ii) Add aq as a new column S; 

(iii) Add q as a new element h; 

(iv) Add the appropriate new column to R. 

d) Add s by 1. 

Step 3.  (Calculate search direction, p = Zps) 

a) Complete RTRps = −h. 

b) Complete LUpB = −Sps. 

c) Set p = [
𝑝𝐵

𝑝𝑆

0
] 

Step 4.  (Ratio Test, “CHUZR”) 

a) Test max  0, where  is the largest value of x + p that remains feasible. 

b) If max = 0, go to step 7. 
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Step 5.  (Line search) 

a) Find , the optimal *, where 

  F(x + 𝛼* p ) = min
0<𝜃≤𝛼𝑚𝑎𝑥

𝑓(𝑥 + 𝜃𝑝) 

b) Update x to x + p and set f and g and g to their values in the new x. 

Step 6.  (Calculate reduced gradient, ℎ̅= ZTg). 

a) Complete UTLT  = gB. 

b) Calculate, ℎ̅ = gs − ST. the new reduced gradient. 

c) Update R using RTR variable-metric recursion with α, ps and the reduced gradient change, 

ℎ̅− h. 

d) Set h = ℎ̅. 

e) If α < α max, return to step 1. No additional constraints were found so they continue in this 

subspace. 

Step 7. (Adjust the base if necessary; remove one superbase). If for some p (0 < p  m + s) variables 

corresponding to column p from [B  S] has reached their limits with  < max: 

a) If the base variable reaches its limit (0 < p  m), 

(i) Swap the p-th column for the q-th of [
𝐵

𝑋𝐵
T] and [

𝑆
𝑋𝑆

𝑇], respectively, such that B remains 

nonsingular, and q is chosen respectively (this will require vector p that satisfies 

UTLTp = ep); 

(ii) Adjust L, U, R and  accordingly to replicate this change in B; 

(iii) Calculate the new gradient h = gs − ST; 

(iv) Go to (c). 

b) Else, the superbase variable reaches its limit (m < p  m + s). Determine q = p− m. 

c) Make the q-th variable in S nonbasic at the appropriate bounds, thus: 

(i) Remove the q-th column from [
𝑆

𝑋𝑆
𝑇] and [

𝑅
ℎ𝑇]. 

(ii) Return R to the triangular matrix. 

d) Subtract s by 1 and go to step 1. 

3. Results and Discussion 

3.1. Computational Experience 1 

Portfolio optimization is a process that involves strategically allocating assets within an investment 

portfolio to achieve specific objectives. It is a mathematical approach used to determine the ideal 

combination of investments that can provide the best balance between risk and return. The pioneering 

study by Markowitz [39] was established on the principle that investors seek higher anticipated return 

and lower volatility. In this context, let S represent the set of investments, and each security is denoted 

by S . The level of expected return is represen by and . The model can be formulated as a quadratic 

programming problem, as shown in the equations below: 

min ∑ ∑ 𝜎𝑖𝑗𝑥𝑖𝑥𝑗

𝑗∈𝑆

,

𝑖∈𝑆

 (2) 

∑  𝑟𝑖𝑥𝑖

𝑖∈𝑆

= 𝜌, (3) 

∑ 𝑥𝑖 = 1,

𝑖∈𝑆

 (4) 

𝑥𝑖 ≥ 0, 𝑖 ∈ 𝑆, (5) 

In the equation above, security i represents the amount of xi money invested, ri = E(Ri)  with Ri 

denotes the expected return of the random variable representing the return of security i, and ij and j 

respectively represent the covariance among security returns and security. The common assumption 

adopted is that the rates of return follow a multivariate normal distribution. The quadratic mixed 

integer programs of the portfolio optimization problem is presented as a subroutine called CALCFG. 

SUBROUTINE CALCFG(MODE,N,X,F,G,NSTATE,NPROB)  

IMPLICIT REAL*8(A-H,O-Z) 
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DIMENSION X(N),G(N) 

OBJECTIVE FUNCTION 

F = X(1)**2+36.0*X(2)**2+X(3)**2+X(5)**2+ 6.0*X(1)*X(2)+0.2*X(1)*X(3)+X(1)*X(5)+X(2)*X(3)+X(3)*X(5) 

PARTIAL DERIVATIVES 

G(1) = 2.0*X(1)+6.0*X(2)+0.2*X(3)+X(5) 

G(2) = 72.0*X(2)+6.0*X(1)+X(3) 

G(3) = 2.0*X(3)+0.2*X(1)+X(2)+X(5) 

G(4) = 0.0 

G(5) = 2.0*X(5)+X(1)+X(3) 

RETURN 

END 

3.2. Computational Experience 2 – System Reliability Optimization 

3.2.1. Introduction 

A system must be successfully developed during the design phase while also being created to fulfill its 

functional requirements. Regarding the latter aspect, various system constraints must be considered to 

ensure dependability in the system. According to Fair et al [40], historically, there have been two 

approaches to increasing the dependability of a multi-stage system. 

a) Redundancy: This involves using more parts or assemblies than what is necessary for the 

current system function. 

b) Overdesign: The components of the system are significantly larger in most of the design 

dimensions. 

Both of these approaches only slightly increase reliability at the cost of consuming crucial 

resources. 

According to Misra and Ljubojevic [41], the ideal system reliability problem involves identifying 

the ideal component dependability and the ideal number of redundancies needed to achieve the greatest 

possible system reliability performance [41]. In the domains of reliability theory and application, 

redundancy is an intriguing topic that can significantly improve a system's reliability. The use of various 

operations research methodologies to address the issue of optimum redundancy allocation has also 

received considerable attention [42]. We focus on problems where the reliability component is fixed, 

and the goal is to determine the best amount of redundancies to be added at each stage. 

3.2.2. Problem Formulation 

The n-stage problem and its associated system reliability can often be mathematically stated as shown 

below. The goal is to maximize the nonlinear function of the variables. 

𝑅 = ∏[1 − (1 − 𝑟𝑗)𝑥𝑗]

𝑛

𝑗=1

 (6) 

as per constraints 

∑ 𝑔𝑗

𝑛

𝑗=1

(𝑥𝑗) ≤ 𝑏𝑖 , 𝑖 = 1, … , 𝑚 (7) 

𝑙 ≤ 𝑥 ≤ 𝑢 (9) 

𝑥𝑗 is a positive integer, 1, ,j n=  (10) 

Where reliability factors are represented as ,  1, ,jr j n= . The 
jg  constraint functions are required to 

be linear. 

3.2.3. Numerical Example 

Consider Rein Luus [43] formulation of the 15-stage problem with 2 linear constraints. 

Maximize 𝑅 = ∑{1 − (1 − 𝑟𝑗)𝑥𝑗}

15

𝑗=1

 (11) 

  Subject to 
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∑ 𝑐𝑗𝑥𝑗 ≤ 400

5

𝑗=1

 (12) 

∑ 𝑤𝑗𝑥𝑗 ≤ 414

15

𝑗=1

 (13) 

jx  is a positive integer j  (14) 

Here, the cost factors 
jc ( 1, ,15j = ) are given as 5, 4, 9, 7, 7, 5, 6, 9, 4, 5, 6, 7, 9, 8, and 6. The weight 

factors 
jw ( 1, ,15j = ) are provided as 8, 9, 6, 7, 8, 8, 9, 6, 7, 8, 9, 7, 6, 5, and 7. The reliability factors, 

jr  

( 1, ,15j = ) are listed as 0.9, 0.75, 0.65, 0.80, 0.85, 0.93, 0.78, 0.66, 0.78, 0.91, 0.79, 0.77, 0.67, 0.79, and 

0.67 and. For each 
jx , 1, ,15j = , the initial value is set to 2.0. 

3.2.4. Solution Procedure 

As observed, the problem is a straightforward nonlinear integer programming issue. Such a class of 

problems cannot be handled by the integerizing technique, which was specifically designed for mixed-

integer programs. We cannot expect any variable to be zero-bounded, particularly due to the nature of 

the objective function (4) and constraint (7). However, since there are fewer rows ( m ) than variables (

n ), there will be an increased number of super basic variables compared to basic variables at the best 

continuous solution. This scenario is evident from the limitations (5) and (6). As a result, the integerizing 

procedure will not be able to utilize enough non-integer slack variables. 

As a result, we approach this category of problems differently. We adopt a methodology that 

involves studying a reduced issue where the majority of variables are held constant as integers, and 

only a small fraction is allowed to fluctuate in discrete increments. The procedure can be summarized 

as follows: 

Step 1. Ignore the integrality constraints as you solve the issue. 

Step 2. Utilize heuristic rounding to obtain a (sub-optimal) integer-feasible solution from the 

continuous solution.. 

Step 3. Divide the integer variables set I  to 1I , based on their boundaries for the nonbasic variables 

in the continuous solution. Hence, they become 2I , 1 2I I I= + . 

Step 4. Conduct an objective function search, maintaining 1I  nonbasic variable and allow discrete 

value changes in 2I .  

Step 5.  Examine the minimized cost of variables in from the solution obtained in step 4. If any 

variables are relieved from their boundaries, they are added to set 2I  and step 4 is repeated. 

Otherwise, the procedure is terminated.  

The aforementioned process provides a framework for creating specialized approaches for 

specific problem classes. Step 2 of the above technique can be applied to the dependability problem, 

Eqns, (4)–(7), by simply rounding down the continuous optimum solution. Due to the nature of 

limitations (5) and (6), the resulting solution is feasible. In this case, we can consider the set  1I  to be 

empty since none of the variables are allowed to have values equal to zero. As a result, in this instance, 

we can combine steps 4 and 5. By examining the reduced costs of the variables, we can make discrete 

adjustments to the values obtained from step 2. 

Table 1 shows the outcome of this approach for solving the aforementioned system dependability 

problem. As can be observed, our results are in agreement with those of Rein Luus [43]. Our approach 

significantly reduces the overall computing time to 7.36 seconds, which is faster than Luus' 7.8 seconds. 

On the other hand, Ong (1984) achieved an optimal finding of 0.9456 for the problem, but unfortunately, 

he did not report the computational time. 
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Table 1. Reliability Problem Results  

Stage j  
Allocation (

jx ) 

Step 1 Step 4 

1 2.64483 3.0 

2 3.94357 4.0 

3 5.32838 5.0 

4 3.64478 3.0 

5 4.10837 3.0 

6 2.34418 2.0 

7 3.66858 4.0 

8 5.21032 5.0 

9 3.83400 4.0 

10 2.54777 3.0 

11 3.57855 3.0 

12 3.92977 4.0 

13 5.09453 5.0 

14 3.95416 5.0 

15 4.95609 5.0 

Obj. Value ( R ) 0.95401 0.94475 

3.3. Computational Experience 2 – Synthesis Problem of a Process System 

3.3.1. Mathematical problem description  

The design problem is often mathematically defined to work with discrete and continuous variables 

methodologies, concurrently determining the optimal structural and operational constraints for a 

system to meet specific design requirements. These variables are the defined decision variables. 

The variable 𝑦 is binary and is associated with each process unit to indicate whether it is included 

in the final ideal construction or not. The continuous variables 𝑥 describe process characteristics such as 

material flow rates. The overall objective is to minimize yearly costs, which include both investment 

and operating costs. 

Minimize: 
𝐹 = 5𝑦1 + 8𝑦2 + 6𝑦3 + 10𝑦4 + 6𝑦5 + 7𝑦6 + 4𝑦7 + 5𝑦8 − 10𝑥3 − 15𝑥5 + 15𝑥10 + 80𝑥17 

 +25𝑥19 + 35𝑥21 − 40𝑥9 + 15𝑥14 − 35𝑥25 + exp(𝑥3) + exp (
𝑥5

1.2
) 

 −65 ln(𝑥10 + 𝑥17 + 1) − 90 ln(𝑥19 + 1) − 80 ln(𝑥21 + 1) + 120 
Subject to: 
 −1.5 ln(𝑥19 + 1) − ln(𝑥21 + 1) − 𝑥14 ≤ 0 
 − ln(𝑥10 + 𝑥17 + 1) ≤ 0 
 −𝑥3 − 𝑥5 + 𝑥10 + 2𝑥17 + 0.8𝑥19 + 0.8𝑥21 − 0.5𝑥9 − 𝑥14 − 2𝑥25 ≤ 0 
 −𝑥3 − 𝑥5 + 2𝑥17 + 0.8𝑥19 + 0.8𝑥21 − 2𝑥9 − 𝑥14 − 2𝑥25 ≤ 0 
 −2𝑥17 − 0.8𝑥19 − 0.8𝑥21 + 2𝑥9 + 𝑥14 + 2𝑥25 ≤ 0 
 −0.8𝑥19 − 0.8𝑥21 + 𝑥14 ≤ 0 
 −𝑥17 + 𝑥9 + 𝑥25 ≤ 0 
 −0.4𝑥19 − 0.4𝑥21 + 1.5𝑥14 ≤ 0 
 0.16𝑥19 + 0.16𝑥21 − 1.2𝑥14 ≤ 0 
 𝑥10 − 0.8𝑥17 ≤ 0 
 −𝑥10 + 0.4𝑥17 ≤ 0 
 exp(𝑥3) − 10𝑦1 ≤ 1 
 exp(𝑥3) − 10𝑦2 ≤ 1 
 𝑥9 − 10𝑦3 ≤ 0 
 0.8𝑥19 + 0.8𝑥21 − 10𝑦4 ≤ 0 
 2𝑥17 − 2𝑥9 − 2𝑥25 − 10𝑦5 ≤ 0 
 𝑥19 − 10𝑦6 ≤ 0 
 𝑥21 − 10𝑦7 ≤ 0 
 𝑥10 + 𝑥17 − 10𝑦8 ≤ 0 
 𝑦1 + 𝑦2 = 1 
 𝑦4 + 𝑦5 ≤ 1 
 −𝑦4 + 𝑦6 + 𝑦7 = 0 
 𝑦3 − 𝑦8 ≤ 0
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0 ≤ 𝑦𝑗 ≤ 1 and integer for 𝑗 = 1, ⋯ ,8 

𝑙 ≤ 𝑥 ≤ 𝑢 
𝑥 = 𝑥𝑗:  (𝑗 = 3,5,10,17,19,21,9,14,25) ∈ 𝑅9 

𝑙𝑇 = (0,0,0,0,0,0,0,0,0),   𝑢𝑇 = (2,2,1,2,2,2,2,1,3) 
The aforementioned formulation consists of eight binary variables, nine bounded continuous variables, 

and 23 inequality constraints. Four of the inequalities, as well as the objective function, exhibit 

nonlinearities. To handle the nonlinear constraints, it is necessary to insert a subroutine called 

CALCON, which is defined as follows: 

SUBROUTINE CALCON (Mode, M, N, Njac, X, F, G, NSTATE, NPROB) 

3.3.2. Discussion of the Results 

NLP software was used to find the continuous best solution. In the continuous solution, there is only 

one binary variable with integer values. However, in the superbasic set, there is a binary variable with 

a non-integer value. To address this, we employed a truncation approach and relocated this variable to 

the nearest integer while keeping its superbasis. After this shift, we needed to determine whether the 

associated basic variables remained feasible. Using our suggested integerizing method, we then 

converted the remaining binary non-integer variables to integers. Table 1 above displays both the 

integer and continuous solutions to the synthesis issue. 
Table 2.  Synthesis Problem Results  

Variables 
Activity in Activity after 

Cont. Solns. integ. Process 

𝑥3  1.90293   0.0 

𝑥5  2.0   2.0 

𝑥10  0.52752  0.46784  

𝑥17  0.65940  0.58480  

𝑥19  2.0  2.0  

𝑥21  1.08333  0.0  

𝑥9  0.65940  0.0  

𝑥4  0.41111  0.26667  

𝑥25  0.0  0.58480  

𝑦1  0.57055  0.0  

𝑦2  0.42945  1.0  

𝑦3  0.06594  0.0  

𝑦4  0.30833  1.0  

𝑦5  0.0  0.0  

𝑦6  0.2  1.0  

𝑦7  0.10833  0.0  

𝑦8  0.11869  1.0  

Obj.value(F)   15.08219  68.00974  

The objective conclusion agrees with the one reached by [32]. 

4. Conclusion 

The "active constraint" technique, the concept of super basic variables, and the scheme of releasing 

nonbasic variables from their constraints have been developed to effectively address mixed-integer 

nonlinear programming issues. This technique is used to make suitable non-integer fundamental 

variables migrate to their nearby integer positions once a problem is solved by ignoring the integrality 

criteria. The technique described in this study has been computationally tested, and the results show 

that it is a feasible solution for large-scale problems. 
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