https://journal.unipdu.ac.id/index.php/register/issue/feedRegister: Jurnal Ilmiah Teknologi Sistem Informasi2025-08-06T05:41:28+00:00Nisa Ayundaregister@ft.unipdu.ac.idOpen Journal Systems<hr /> <table> <tbody> <tr> <td align="left"><strong>Original title</strong></td> <td>:</td> <td> Register: Jurnal Ilmiah Teknologi Sistem Informasi</td> </tr> <tr> <td align="left"><strong>English title</strong></td> <td>:</td> <td> Register: Scientific Journals of Information System Technology</td> </tr> <tr> <td align="left"><strong>Short title</strong></td> <td>:</td> <td>Register</td> </tr> <tr> <td align="left"><strong>Abbreviation</strong></td> <td>:</td> <td> regist. j. ilm. teknol. sist. inf.</td> </tr> <tr> <td align="left"><strong>Frequency</strong></td> <td>:</td> <td> 2 issues per year (January & July)</td> </tr> <tr> <td align="left"><strong>No. of articles per issue</strong></td> <td>:</td> <td> 10 research articles and reviews per issue</td> </tr> <tr> <td align="left"><strong>DOI</strong></td> <td>:</td> <td> 10.26594/register</td> </tr> <tr> <td align="left"><strong>PISSN</strong></td> <td>:</td> <td><a title="PISSN" href="http://u.lipi.go.id/1459272853" target="_blank" rel="noopener"> 2503-0477</a></td> </tr> <tr> <td align="left"><strong>EISSN</strong></td> <td>:</td> <td><a title="EISSN" href="http://u.lipi.go.id/1452153290" target="_blank" rel="noopener"> 2502-3357</a></td> </tr> <tr> <td align="left"><strong>EIC</strong></td> <td>:</td> <td> Nisa Ayunda</td> </tr> <tr> <td align="left"><strong>Publisher</strong></td> <td>:</td> <td> Faculty of Science and Technology, Universitas Pesantren Tinggi Darul Ulum (Unipdu)</td> </tr> <tr> <td align="left"><strong>Citation Analysis</strong></td> <td>:</td> <td><a title="Scopus" href="https://www.scopus.com/sourceid/21101037310" target="_blank" rel="noopener"> Scopus</a>, <a title="Sinta" href="https://sinta.kemdikbud.go.id/journals/detail?id=1911" target="_blank" rel="noopener">Sinta</a>, <a title="GS" href="https://scholar.google.co.id/citations?user=0O9jqQkAAAAJ" target="_blank" rel="noopener">Google Scholar</a>, <a title="Dimensions" href="https://app.dimensions.ai/discover/publication?and_facet_journal=jour.1314504&and_facet_source_title=jour.1314504" target="_blank" rel="noopener">Dimensions</a>, <a title="wizdom.ai" href="https://www.wizdom.ai/journal/register_jurnal_ilmiah_teknologi_sistem_informasi/research-overlap/2503-0477" target="_blank" rel="noopener">wizdom.ai</a>, <a title="Garuda" href="http://garuda.ristekdikti.go.id/journal/view/8624" target="_blank" rel="noopener">Garuda</a></td> </tr> <tr> <td align="left"><strong>Language</strong></td> <td>:</td> <td> English</td> </tr> <tr> <td align="left"><strong>Discipline</strong></td> <td>:</td> <td> Information Technology, Information Systems Engineering, Intelligent Business Systems, and <a title="Discipline" href="https://journal.unipdu.ac.id/index.php/register/scope" target="_blank" rel="noopener">others</a></td> </tr> </tbody> </table> <hr /> <p><span lang="id"><strong>Register: Scientific Journals of Information System Technology</strong> is an international, peer-reviewed journal that publishes the latest research results in Information and Communication Technology (ICT). The journal covers a wide range of topics, including Enterprise Systems, Information Systems Management, Data Acquisition and Information Dissemination, Data Engineering and Business Intelligence, and IT Infrastructure and Security. The journal has been accredited with grade “<a title="Sinta Register" href="https://sinta.ristekbrin.go.id/journals/detail?id=1911"><strong>SINTA 1</strong></a>” by the Director Decree (<a title="SK Akreditasi 2021" href="https://drive.google.com/file/d/1s8Qi7JjNE5NZg8O3Cjzt0zVgJPm0JqBW/view?usp=sharing">B/1796/E5.2/KI.02.00/2020</a>) as a recognition of its excellent quality in management and publication.</span></p>https://journal.unipdu.ac.id/index.php/register/article/view/5388Spatial Semantic Analysis and Origin-Destination Prediction Based on Extensive GPS Trajectory in Jakarta2025-02-07T09:26:31+00:00Humasak Simanjuntakhumasak@gmail.comAgnes Hutaurukagnesabigael28@gmail.comHaryati Situmorangrosalinasitumorang291@gmail.comYoshua Silitongamasiyoshua25@gmail.com<p>The rapid growth of mobility data from GPS trajectories offers unprecedented opportunities to gain deep insights into human mobility behavior, with significant implications for urban planning, traffic management, public transportation optimization, emergency response, and smart city development. However, a key challenge lies in transforming raw GPS trajectory data, consisting of sequences of coordinates and timestamps, into meaningful, context-rich information that can support analysis and decision making. This study proposes a semi-supervised framework to enhance the contextual and semantic understanding of journeys, using Grab Jakarta GPS trajectory data as a case study. The framework involves extracting origin-destination pairs, augmenting the data with temporal (day, time) and spatial (postal code, land use) contexts through public datasets, assigning cluster labels to characterize groups of journeys, analyzing mobility patterns, and ultimately predicting trip destinations. Origin-destination clustering, performed using the DBSCAN algorithm, identified five meaningful clusters, achieving the highest silhouette score of 0.56 with epsilon = 7.0 and min_samples = 5. Subsequently, a regression-based prediction model was developed, employing nine algorithms, including three deep learning approaches. The LSTM model demonstrated the best performance, yielding a mean squared error of 0.0053 and a coefficient of determination (R²) of 86.20% in predicting trip destinations. These findings highlight the potential of integrating spatial-temporal enrichment and machine learning to derive actionable insights from GPS trajectory data.</p>2025-08-06T00:00:00+00:00Copyright (c) 2025 Humasak Simanjuntak, Agnes Hutauruk, Haryati Situmorang, Yoshua Silitongahttps://journal.unipdu.ac.id/index.php/register/article/view/4922A Web-Based Forecasting Approach to Estimating the Number of Low-Income Households Eligible for Social Food Aid Using Holt’s Double Exponential Smoothing2025-03-16T12:38:07+00:00Mukhamad Masrur Masrurmukhamadmasrur@ft.unipdu.ac.idSolikhin Solikhiniingshalihin@gmail.comMuhammad Walid Syahrul Churumwalidsyahrulw@gmail.comM. Zakki Abdillahm.zakki.abdillah@gmail.comToni Wijanarko Adi Putratoni.wijanarko@stekom.ac.id<p>This work presents a web-based forecasting methodology for predicting the quantity of low-income households qualified for social food assistance utilizing Holt’s Double Exponential Smoothing (HDES) technique. Precise assessment is crucial for governmental bodies and social welfare organizations to guarantee efficient aid distribution and effective resource allocation. The proposed method amalgamates time series forecasting models with a web-based application to deliver real-time predictions and accessibility for decision-makers. Historical data on low-income household statistics were employed to formulate and authenticate the forecasting model. The findings indicate that HDES delivers dependable short-term predictions with low error rates, accurately reflecting patterns in the data. This online application offers policymakers an effective means for monitoring socio-economic trends and enhancing the responsiveness of social assistance initiatives. This research contributes by integrating statistical forecasting with web-based applications to aid social policy decisions.</p>2025-11-28T00:00:00+00:00Copyright (c) 2025 Mukhamad Masrur Masrur, Solikhin Solikhin; Muhammad Walid Syahrul Churum; M. Zakki Abdillah