Segmentasi mental foramen di mandibula pada citra radiografi panoramik dengan Self-Organizing Map
DOI:
https://doi.org/10.26594/teknologi.v10i2.2014Abstract
Sistem berbasis komputer di bidang medis dapat digunakan untuk membantu mendiagnosis penyakit tertentu. Pembuatan sistem berbasis komputer berdasarkan citra mempunyai beberapa tahapan penting, diantaranya adalah tahapan segmentasi. Tahapan segmentasi merupakan tahapan untuk melakukan pemisahan objek terhadap background. Thresholding merupakan metode dalam melakukan segmentasi, di mana prosesnya didasarkan pada warna keabuan yang menghasilkan citra biner; 1 (putih) untuk mewakili objek dan 0 (hitam) untuk mewakili background. Mental foramen adalah bagian yang ada dalam mandibula, salah satu fungsinya untuk identifikasi forensik. Agar fungsi mental foramen bisa digunakan, maka salah satu proses yang harus dilalui adalah proses segmentasi. Tujuan penelitian ini adalah melakukan segmentasi mental foramen di mandibula citra radiografi gigi. Manfaat dari melakukan segmentasi mental foramen pada mandibula adalah dapat menampilkan informasi mental foramen di mandibula secara jelas pada citra radiografi gigi agar dapat digunakan pada proses identifikasi manusia di kedokteran forensik gigi. Adapun algoritma yang digunakan dalam melakukan thresholding adalah Self-Organizing Map (SOM), karena telah terbukti dapat melakukan segmentasi lebih baik. Tahapan penelitian ini terdiri dari 1) Pengumpulan citra radiografi panoramic didapatkan dari RSUD Ibnu Sina Gresik di Jawa Timur sebanyak 16 citra radiografi panoramic. 2) Citra radiografi panoramic dilakukan akuisisi agar menghasilkan citra digital; 3) Perbaikan citra menggunakan ekualisasi histogram; dan 4) Pengambilan bagian mental foramen di mandibula terlebih dahulu dilakukan croping menggunakan SOM agar komputasi tidak tinggi. Berdasarkan hasil uji coba, SOM memiliki kinerja kurang bagus dalam melakukan segmentasi mental foramen pada mandibula secara sempurna, karena hanya mampu melakukan segmentasi secara baik sebanyak 3 citra dari 16 citra berdasarkan pengamatan langsung secara manual.
Computer based system in the medical field is used to assist a diagnose of certain diseases. There are several steps to process a digital image, and the necessary part of it is image segmentation. Image segmentation is applied for separating between the foreground and background of an image. Image thresholding is a basic image segmentation that produces a binary image from a gray-level image, which 1 represents as an object; otherwise, it is the background. Mental foramina is a part of the mandibular canal that is used to acknowledge of digital forensics. In this paper, we apply mental foramina image segmentation on the mandible canal in dental radiographic. The use of mental foramina segmentation is to perform its information on mandibular obviously so that it can be used for human identification in the medical of dental graphics. We utilize the Self-Organizing Map (SOM) as it has better segmentation than other algorithms. In research methodology, we divide the process as follows: 1) primary dataset of panoramic radiographic images was obtained from RSUD Ibnu Sina Gresik, East Java with the total of images is 16. 2) The acquisition of panoramic radiographic images into digital images. 3) Image enhancement using histogram equalization. 4) Mental foramina images on the mandibular canal were cropped using SOM to avoid a high computational process. The result shows that SOM achieves low evaluation of metal foramina image segmentation on the mandibular canal since it is only undertaking three out of sixteen images based on visualization measurement.
References
Abdi, A. H., Kasaei, S., & Mehdizadeh, M. (2015). Automatic segmentation of mandible in panoramic x-ray. Journal of Medical Imaging, 2(4).
Aganj, I., Harisinghani, M. G., Weissleder, R., & Fischl, B. (2018). Unsupervised Medical Image Segmentation Based on the Local Center of Mass. Scientific Reports, 13012(13012).
Alias, A., Ibrahim, A., Bakar, S. N., Shafie, M. S., Das, S., & Nor, F. M. (2017). Morphometric and Morphological Study of Mental Foramen in the Malaysian Population: Anatomy and Forensic Implications. IIUM Medical Journal Malaysia, 16(2), 47-53.
Fariza, A., Arifin, A. Z., Astuti, E. R., & Kurita, T. (2019). Segmenting Tooth Components in Dental X-Ray Images Using Gaussian KernelBased Conditional Spatial Fuzzy C-Means Clustering Algorithm. International Journal of Intelligent Engineering and Systems, 12(3), 108-117.
Fitriana, I. (2014). Peningkatan kualitas citra dental panoramic radiograph pada tulang mandibula menggunakan multi-histogram equalization. Malang: Universitas Islam Negeri Maulana Malik Ibrahim.
Indraswari, R., Kurita, T., Arifin, A. Z., Suciati, N., & Astuti, E. R. (2019). Multi-projection deep learning network for segmentation of 3D medical images. Pattern Recognition Letters, 125, 791-797.
Indrianie, S. N. (2013). Mathematical morphological edge detection untuk segmentasi foramen mentale pada citra Dental Panoramic Radiograph (DPR). Malang: Universitas Islam Negeri Maulana Malik Ibrahim.
Kadir, A., & Susanto, A. (2013). Teori dan Aplikasi Pengolahan Citra. Yogyakarta: Andi Publisher.
Kim, G., Lee, J., Lee, H., Seo, J., Koo, Y.-M., Shin, Y.-G., & Kim, B. (2011). Automatic Extraction of Inferior Alveolar Nerve Canal Using Feature-Enhancing Panoramic Volume Rendering. IEEE Transactions on Biomedical Engineering, 58(2), 253-264.
Kroon, D.-J. (2011). Segmentation of the Mandibular Canal in Cone-Beam CT Data. Enschede, Netherlands: University of Twente. doi:https://doi.org/10.3990/1.9789036532808
Meidyani, B., Qolby, L. S., Fajrin, A. M., Arifin, A. Z., & Navastara, D. A. (2019). Iterated Merging Region Based on the Average Grayscale Difference for Interactive Image Segmentation. Jurnal Ilmu Komputer dan Informasi, 12(1), 13-18.
Nafi’iyah, N., & Fatichah, C. (2017). Fuzzy Self Organizing Map untuk Proses Thresholding pada Citra Dental Panaromic. Seminar Nasional Sistem Informasi (pp. 511-524). Malang: Universitas Merdeka Malang.
Ning, J., Zhang, L., Zhang, D., & Wu, C. (2010). Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 43(2), 445-456.
Sen, A., Suleymanoglu, B., & Soycan, M. (2020). Unsupervised extraction of urban features from airborne lidar data by using self-organizing maps. Survey Review, 52(371), 150-158.
Zareei, A., & Karimi, A. (2016). Liver segmentation with new supervised method to create initial curve for active contour. Computers in Biology and Medicine, 75, 139-150.
Downloads
Published
Issue
Section
License
Please find the rights and licenses in Teknologi: Jurnal Ilmiah Sistem Informasi. By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
Register's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, Register permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and Register on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
Copyright and other proprietary rights relating to the article, such as patent rights,
The right to use the substance of the article in own future works, including lectures and books,
The right to reproduce the article for own purposes,
The right to self-archive the article (please read out deposit policy),
The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Register: Jurnal Ilmiah Teknologi Sistem Informasi).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. Register will not be held liable for anything that may arise due to the author(s) internal dispute. Register will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that Register entitles the author(s) to no royalties or other fees.
7. Miscellaneous
Register will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. Register's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.