Desain dan implementasi Wireless Sensor Network menggunakan LoRa untuk pemantauan tingkat pencemaran udara di Kota Surabaya

Authors

  • Yasir Arafat Institut Sains dan Teknologi Terpadu Surabaya, Surabaya
  • Endang Setyati Institut Sains dan Teknologi Terpadu Surabaya, Surabaya

DOI:

https://doi.org/10.26594/teknologi.v10i2.2070

Abstract

Pencemaran udara merupakan hal yang tidak dapat dihindarkan pada setiap daerah. Sumber pencemaran udara tersebut bermacam-macam, seperti gas kendaraan bermotor, limbah pabrik, dan sampah yang dibuang sembarangan. Penelitian ini mengusulkan pembuatan sebuah sistem pemantauan kualitas udara di kota Surabaya. Zat pencemar yang menjadi tolak ukur untuk menentukan tingkat pencemaran udara dalam penelitian ini adalah CO (Carbon monoxide), SO2 (Sulfur dioxide), O3 (Ozone), dan NO2 (Nitrogen dioxide). Sensor yang digunakan untuk mengetahui kadar zat pencemar tersebut adalah MQ-7 dan MQ-135. Penelitian ini memanfaatkan wireless sensor network (WSN) dan teknologi LoRa sebagai media pengiriman data. Empat titik pengujian dan dua papan ISPU (Indeks Standar Pencemar Udara) sebagai ground truth digunakan untuk mengetahui tingkat pencemaran udara di kota surabaya. Pengukuran dan perbandingan antara sensor dengan ground truth dilakukakan untuk mengetahui hasil penelitian ini. Hasil pemantauan tingkat pencemaran udara didapatkan dengan menggunakan sensor MQ-7 dan MQ-135 yang mampu membaca keadaan zat pencemar dengan tingkat error paling besar 5,77%. Sistem pengiriman data menggunakan teknologi LoRa pada jarak terjauh 2,97 km dapat mengirimkan data dengan baik dengan RSSI (Received Signal Strength Indication) -92 dBm pada ketinggian 12 mdpl dan frekuensi 433 Mhz. Data hasil pemantauan tersebut dapat dipantau melalui aplikasi ThingSpeak secara online.

 

Everywhere, air pollution isn't avoidable. The source of pollution could be anything, such as gas emitted from vehicles, toxic waste, and garbages that are thrown not to their places. In this study, a system to monitor air quality will be built in Surabaya. The pollutants that will be the benchmark to measure the level of air pollution are CO (Carbon Dioxide), SO2 (Sulfur Dioxide), O3 (ozone), and NO2 (Nitrogen Dioxide). The sensor that will be used to detect the level of pollutants is called MQ-7 and MQ-135. This study takes Wireless Sensor Network (WSN) into use while LoRa technology is being used as a media to send data. To know the level of pollution in Surabaya, 4 test points are taken, and AQI (Air Pollution Index) are used as ground truth. After measuring and comparing the sensor and ground truth, the result that is taken using MQ-7 sensor and MQ-135 could read the status of pollutants with 5.77% as its highest sensor range. After that, the system that is sending the data using LoRa technology with 2.97 km as its highest distance could send the data well with RSSI -92dBm in 12m MSL height and 433 Mhz frequency. The result of this monitoring could be seen through thingspeak application online.

Author Biographies

Yasir Arafat, Institut Sains dan Teknologi Terpadu Surabaya, Surabaya

Teknologi Informasi

Endang Setyati, Institut Sains dan Teknologi Terpadu Surabaya, Surabaya

Teknologi Informasi

References

Ali, N. A., & Latiff, N. A. (2019). Environmental Monitoring System Based on LoRa Technology in Island. IEEE International Conference on Signals and Systems (ICSigSys) (pp. 160-166). Bandung, Indonesia: IEEE.

Electronics, H. (2013). Tecnical Data MQ-135 Gas Sensor. Henan,China: Hanwei Electronics.

Electronics, H. (2016). Tecnical Data MQ-7 Gas Sensor. Henan,China: Hanwei Electronics.

Gusnita, D. (2013). Analisis Kondisi Pencemar Udara (SO2 dan NO2) di Kota Surabaya. Prosiding Seminar Nasional Sains Atmosfer dan Antariksa. Bandung: LAPAN.

IQAir, I. (2020). Kota paling berpolusi di dunia 2019 (PM2.5). Retrieved from IQAir: https://www.iqair.com/id/world-most-polluted-cities?continent=59af92b13e70001c1bd78e53&country=Rqrg4reHqi8taY4re&state=&page=1&perPage=50&cities=

Kartikasari, D. (2020). Analisis Faktor-Faktor yang Mempengaruhi Level Polusi Udara dengan Metode Regresi Logistik Biner. Mathunesa: Jurnal Ilmiah Matematika, 8(1), 55-59.

Khambati, H., Boles, K., & Jetty, P. (2017). Google Maps offers a new way to evaluate claudication. Journal of Vascular Surgery, 65(5), 1467-1472.

Lara-Cueva, R. A., Meneses, P. B., Márquez, M. D., Gordillo, R. X., & Benítez, D. S. (2019). Air Quality Monitoring System Within Campus by Using Wireless Sensor Networks. 14th Iberian Conference on Information Systems and Technologies (CISTI). Coimbra, Portugal: IEEE.

Mahmud, M. S., Buyamin, S., Mokji, M. M., & Abidin, M. S. (2018). Internet of Things based Smart Environmental Monitoring for Mushroom Cultivation. Indonesian Journal of Electrical Engineering and Computer Science, 10(3), 847-852.

Manurung, M. B., Darmawan, D., & Iskandar, R. F. (2018). Perancangan Alat Ukur Kadar Karbon Monoksida (CO) Pada Kendaraan Berbasis Sensor MQ7. Proceedings of Engineering (E-Proceeding). 5, pp. 2358-2366. Bandung: Universitas Telkom.

Pavani, M., & Rao, P. T. (2016). Real time pollution monitoring using Wireless Sensor Networks. IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). Vancouver, BC: IEEE.

Petrić, T., Goessens, M., Nuaymi, L., Toutain, L., & Pelov, A. (2016). Measurements, performance and analysis of LoRa FABIAN, a real-world implementation of LPWAN. IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Valencia, Spain: IEEE.

Raipure, S., & Mehetre, D. (2015). Wireless sensor network based pollution monitoring system in metropolitan cities. International Conference on Communications and Signal Processing (ICCSP) (pp. 1835-1838). Melmaruvathur, India: IEEE.

Rajasegarar, S., Zhang, P., Zhou, Y., Karunasekera, S., Leckie, C., & Palaniswami, M. (2014). High resolution spatio-temporal monitoring of air pollutants using wireless sensor networks. 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). Singapore: IEEE.

Xing, X., Song, J., Lin, L., Tian, M., & Lei, Z. (2017). Development of Intelligent Information Monitoring System in Greenhouse Based on Wireless Sensor Network. 4th International Conference on Information Science and Control Engineering (ICISCE) (pp. 970-974). Changsha: IEEE.

Downloads

Additional Files

Published

2020-09-27

Issue

Section

Articles