Analisis topik konten channel YouTube K-pop Indonesia menggunakan Latent Dirichlet Allocation

Authors

DOI:

https://doi.org/10.26594/teknologi.v11i1.2155

Abstract

The development of digital technology has brought new media, one of which is Youtube, which is now one of the most widely used applications for internet users in the world. The growth of the audience which is known as viewers, is also suported by the contribution from the content creators or also known as YouTubers from Indonesian. The more the viewers grow, the more their demand for trend content are also grwoing at surprisingly speed in one of the topics which is H-pop. In this study, the author wanted to see the dominant topics that K-pop YouTubers often upload to support content creator. This research was conducted using the Latent Dirichlet Allocation method. The analysis was carried out on after using text mining on 2563 videos from 10 K-pop YouTuber accounts with more than 100,000 subscribers. To determine the optimal number of topics by looking at the value of perplexity and topic conherence. The results obtained are the top 5 topics that are the content material in the uploaded video. These topics include reactions to dance covers, unboxing on albums and conducting reviews, riddles from K-pop dances and vlogs together to discuss about covers and reactions to sounds on K-pop songs.

Author Biographies

Alfrida Rahmawati, Institut Teknologi Sepuluh Nopember, Surabaya

Sistem Informasi

Najla Lailin Nikmah, Institut Teknologi Sepuluh Nopember, Surabaya

Sistem Informasi

Reynaldi Drajat Ageng Perwira, Institut Teknologi Sepuluh Nopember, Surabaya

Sistem Informasi

Nur Aini Rakhmawati, Institut Teknologi Sepuluh Nopember, Surabaya

Sistem Informasi

References

Ahn, J., Oh, S., & Kim, H. (2013, Juli 1). Korean Pop Takes Off! Social Media Strategy of Korean Entertainment Industry. 10th International Conference on Service Systems and Service Management (pp. 774-777). Hong Kong: IEEE.

Brata, D. W., & Hetami, A. (2015). Perancangan Information Retrieval (IR) untuk Pencarian Ide Pokok Teks Artikel Berbahasa Inggris dengan Pembobotan Vector Space Model. Jurnal Ilmiah Te. Jurnal Ilmiah Teknologi dan Informasi ASIA, 9(1), 53-59.

Budiman, E., Santoso, E., & Afirianto, T. (2017). Pendeteksi Jenis Autis pada Anak Usia Dini Menggunakan Metode Linear Discriminant Analysis (LDA). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1, 583-592. Retrieved Oktober 21, 2020, from http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/169/85

Campbell, J. C., Hindle, A., & Stroulia, E. (2014). Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data.

Cayari, C. (2011). The YouTube effect: How YouTube has provided new ways to consume, create, and share music. International Journal of Education & the Arts, 12(6).

Hong, L., & Davison, B. D. (2010). Empirical Study of Topic Modeling in Twitter. SOMA '10: Proceedings of the First Workshop on Social Media Analytics, 10, 80-88.

Iqbal, M. (2020, Oktober 15). YouTube Revenue and Usage Statistics (2020). Retrieved from Business of Apps: https://www.businessofapps.com/data/youtube-statistics/

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2018). Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. Multimed Tools Appl, 78, 15169–15211.

Juwita, S. H. (2018). Tingkat Fanatisme Penggemar K-Pop dan Kemampuan Mengelola Emosi pada Komunitas Exo-L di Kota Yogyakarta. Jurnal Riset Mahasiswa Bimbingan dan Konseling, 4(7), 273-286. Retrieved Oktober 21, 2020, from http://journal.student.uny.ac.id/ojs/index.php/fipbk/article/viewFile/12568/12114#:~:text=Menurut%20hasil%20penelitian%20yang%20dilakukan,dan%202%20%25%20berusia%20di%20atas

KOCIS. (2011). The Korean Wave: A New Pop Culture Phenomenon. South Korea: Korean Culture and Information Service.

Maulida, L. (2020, September 15). Jumlah pengguna unik YouTube di Indonesia capai 93 juta. Retrieved Oktober 21, 2020, from tek.id: https://www.tek.id/tek/jumlah-pengguna-unik-youtube-di-indonesia-capai-93-juta-b1ZT79iPE

Nikmah, N. L., Rahmawati, A., Perwira, R. D., & Rakhmawati, N. A. (2020). Dataset from YouTuber K-pop in Indonesia. Retrieved from https://zenodo.org/record/4153459#.YAr3FOgzbIX

Prihatini, P. M., Suryawan, I. K., & Mandia, I. N. (2017). Metode Latent Dirichlet Allocation untuk Ekstraksi Topik Dokumen. Jurnal Logic, 17(3), 154-158.

Rangkuti, M. D. (2020). Analisis Topik Komentar Video Beberapa Akun Youtube e-Commerce Indonesia Menggunakan Metode Latent Dirichlet Allocation. Jakarta: Universitas Islam Negeri Syarif Hidayatullah. Retrieved Oktober 19, 2020, from http://repository.uinjkt.ac.id/dspace/bitstream/123456789/51580/1/MUHAMMAD%20DIAZ%20ELPRANA%20RANGKUTI-FST.pdf

Shim, D. (2006). Hybridity and the rise of Korean popular culture in Asia. Media, Culture & Society, 28(1), 25-44.

Siregar, R. R., Sinaga, F. A., & Arianto, R. (2017). Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model. Computatio: Journal of Computer Science and Information Systems, 1(2), 171-186.

Downloads

Published

2021-01-23

Issue

Section

Articles