Apakah kombinasi power lbp dan fourier descriptor dapat digunakan untuk klasifikasi citra kerang?

Authors

  • Putri Aisyiyah Rakhma Devi Teknik Informatika - Institut Teknologi Sepuluh Nopember Surabaya
  • Nanik Suciati Teknik Informatika - Institut Teknologi Sepuluh Nopember Surabaya
  • Wijayanti Nurul Khotimah Teknik Informatika - Institut Teknologi Sepuluh Nopember Surabaya

DOI:

https://doi.org/10.26594/teknologi.v6i2.768

Abstract

ABSTRAK

Permasalahan pengklasifikasian secara manual biasanya terletak pada hasil akurasi dan waktu klasifikasi. Pengklasifikasi citra kerang pada umumnya dilakukan berdasarkan pada karakteristik bentuk dan tekstur cangkang kerang. Pengembangan perangkat lunak untuk pengklasifikasian secara otomatis diharapkan dapat meningkatkan hasil akurasi dan memperbaiki waktu klasifikasi. Pada penelitian ini bertujuan untuk mengkombinasikan fitur tekstur berbasis metode Power LBP dan fitur bentuk berbasis metode fourier descriptor yang digunakan untuk klasifikasi citra kerang.

Citra input yang digunakan, sebelumnya telah melalui praproses dan  segmentasi untuk memisahkan objek dengan background. Citra objek yang sudah terpisah ditransformasi menjadi citra biner dan citra grayscale untuk proses ekstraksi fitur. Hasil dari kedua fitur yang sudah diperoleh akan dilakukan kombinasi dengan mempertimbangkan bobot masing-masing fitur yang kemudian dilakukan normalisasi. Dengan mengkombinasikan fitur tekstur dan fitur bentuk diharapkan memperoleh fitur yang signifikan yang dapat meningkatkan akurasi sebuah klasifikasi.

Uji coba dilakukan pada 3 jenis dataset kerang yakni kerang darah, kerang pasir dan kerang bulu dengan menggunakan SVM cross validation dengan k=2 . Hasil uji coba menunjukkan bahwa ada keterkaitan antara mengkombinasikan fitur tekstur dan fitur bentuk pada permasalahan klasifikasi citra kerang dapat diperbaiki dengan hasil akurasi klasifikasi yang diperoleh sebesar 99,39% dengan fitur tekstur lebih dominan daripada fitur yang lainnya.

 

Kata Kunci: citra kerang, ekstraksi fitur, fourier descriptor, klasifikasi, power LBP.

 

ABSTRACT

Shells image classification are generally conducted based on the characteristics of the shape and texture of the shells. The problems of classification usually occur results of accuracy and timing classification. The software development for classification is expected to increase the yield of accuracy result and optimize the time of classification. In this study, we combine extracting texture features based Power LBP method and extracting shape features based Fourier Descriptor method for shells image classification.  

The used input images had been conducted preprocessing  and segmentation to separate object and background using Otsu methods. The objects images that had been separated are transformed into a binary image and grayscale image for feature extraction process. Texture features are extracted using Power LBP (PLBP) method and grayscale image as input. Shape features are extracted using Fourier Descriptor (FD) method and binary image as input. The results of these two features will be combined by considering the weight of each feature and then normalized. Combines texture features and shape features, we expect to obtain significant features that can improve the accuracy of classification.

Tests was performed on three types of shells dataset that is blood clams, mussels and scallops feather sand by using SVM cross validation with k = 2 fold. The results show that there is a link between features combine texture and shape features on the image classification problems that can be solved with the results obtained classification accuracy of 99.39% with a texture feature more dominant than the other features.

 

Keywords: classification, feature extraction, Fourier Descriptor , Power LBP, Shellfish image.

Author Biography

Nanik Suciati, Teknik Informatika - Institut Teknologi Sepuluh Nopember Surabaya

Teknik Informatika - Institut Teknologi Sepuluh Nopember Surabaya

References

T. Ojala, M. Pietikainen and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, 2002.

M. Pietikäinen, T. Ojala and Z. Xu, "Rotation-invariant texture classification using feature distributions," Pattern Recognition, vol. 33, no. 1, p. 43–52, 2000.

Z. Guo, L. Zhang and D. Zhang, "A completed modeling of local binary pattern operator for texture classification," IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1657-1663, 2010.

Y. Zhao, W. Jia, R.-X. Hu and H. Min, "Completed robust local binary pattern for texture classification," Neurocomputing, vol. 106, no. April, pp. 68-76, 2013.

B. Smolka and K. Nurzynska, "Power LBP: A Novel Texture Operator for Smiling and Neutral Facial Display Classification," Procedia Computer Science, vol. 51, no. 2015, pp. 1555-1564, 2015.

Z. Chen and S.-K. Sun, "A Zernike moment phase-based descriptor for local image representation and matching," IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 205-219, 2010.

M. Ghosh, J. Mukherjee and R. Parekh, "Fish Shape Recognition using Multiple Shape Descriptors," International Journal of Computer Applications, vol. 73, no. 16, pp. 14-19, 2013.

A. Aakif and M. F. Khan, "Automatic classification of plants based on their leaves," Biosystems Engineering, vol. 139, no. November, pp. 66-75, 2015.

D. Zhang and G. Lu, "Shape-based image retrieval using generic Fourier descriptor," Signal Processing: Image Communication, vol. 17, no. 10, pp. 825-848, 2002.

A. Kadir, "Leaf identification using Fourier descriptors and other shape features," Gate to Computer Vision and Pattern Recognition, vol. 1, no. 1, pp. 3-7, 2015.

M. Mentari, Y. A. Sari and R. K. Dewi, "Deteksi Kanker Kulit Melanoma dengan Linear Discriminant Analysis-Fuzzy k-Nearest Neigbhour Lp-Norm," Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 2, no. 1, pp. 34-39, 2016.

A. S. Nugroho, A. B. Witarto and D. Handoko, "Support Vector Machine - Teori dan Aplikasinya dalam Bioinformatika," 16 Maret 2005. [Online]. Available: http://www.komputasi.lipi.go.id/utama.cgi? tampilpublikasi&1014224403&1110939371 . [Accessed 2016 Juli 1].

Published

2016-07-01

Issue

Section

Articles