Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia
DOI:
https://doi.org/10.26594/register.v4i1.1157Keywords:
ANN, NN, artificial neural network, declaration for, impor export declaration, oil and gas, predictions, ekspor, impor, Jaringan Syaraf Tiruan, migas, prediksi, minyak dan gas, JSTAbstract
Analisis pada penelitian penting dilakukan untuk tujuan mengetahui ketepatan dan keakuratan dari penelitian itu sendiri. Begitu juga dalam prediksi volume ekspor dan impor migas di Indonesia. Dilakukannya penelitian ini untuk mengetahui seberapa besar perkembangan ekspor dan impor Indonesia di bidang migas di masa yang akan datang. Penelitian ini menggunakan Jaringan Syaraf Tiruan (JST) atau Artificial Neural Network (ANN) dengan algoritma Backpropagation. Data penelitian ini bersumber dari dokumen kepabeanan Ditjen Bea dan Cukai yaitu Pemberitahuan Ekspor Barang (PEB) dan Pemberitahuan Impor Barang (PIB). Berdasarkan data ini, variabel yang digunakan ada 7, antara lain: Tahun, ekspor minyak mentah, impor minyak mentah, ekspor hasil minyak, impor hasil minyak, ekspor gas dan impor gas. Ada 5 model arsitektur yang digunakan pada penelitian ini, 12-5-1, 12-7-1, 12-8-1, 12-10-1 dan 12-14-1. Dari ke 5 model yang digunakan, yang terbaik adalah 12-5-1 dengan menghasilkan tingkat akurasi 83%, MSE 0,0281641257 dengan tingkat error yang digunakan 0,001-0,05. Sehingga model ini bagus untuk memprediksi volume ekspor dan impor migas di Indonesia, karena akurasianya antara 80% hingga 90%.
Analysis of the research is Imporant used to know precision and accuracy of the research itself. It is also in the prediction of Volume Exports and Impors of Oil and Gas in Indonesia. This research is conducted to find out how much the development of Indonesia's exports and Impors in the field of oil and gas in the future. This research used Artificial Neural Network with Backpropagation algorithm. The data of this research have as a source from custom documents of the Directorate General of Customs and Excise (Declaration Form/PEB and Impor Export Declaration/PIB). Based on this data, there are 7 variables used, among others: Year, Crude oil exports, Crude oil Impors, Exports of oil products, Impored oil products, Gas exports and Gas Impors. There are 5 architectural models used in this study, 12-5-1, 12-7-1, 12-8-1, 12-10-1 and 12-14-1. Of the 5 models has used, the best models is 12-5-1 with an accuracy 83%, MSE 0.0281641257 with error rate 0.001-0.05. So this model is good to predict the Volume of Exports and Impors of Oil and Gas in Indonesia, because its accuracy between 80% to 90%.
References
Alqurni, R. P., & Muljono, M. (2016). Pengenalan tanda tangan menggunakan Metode Jaringan Saraf Tiruan Perceptron dan Backpropagation. Techno.com, 15(4), 352-363.
Annuri, I. F., & Ruzikna, R. (2017). Analisis penggunaan metode Altman (Z-score) dalam memprediksi terjadinya financial distress pada perusahaan minyak bumi dan gas (Migas) yang terdaftar di Bursa Efek Indonesia (BEI) periode 2010-2014. Jurnal Online Mahasiswa Fakultas Ilmu Sosial dan Ilmu Politik Universitas Riau, 4(2), 1-13.
BPS, B. (2017). Volume Ekspor dan Impor Migas (Berat bersih: ribu ton), 1996-2016. Jakarta: Badan Pusat Statistik. Retrieved from https://www.bps.go.id/statictable/2017/11/20%2000:00:00/1982/volume-ekspor-dan-impor-migas-berat-bersih-ribu-ton-1996-2016.html
Hidayat, N. F., Musadieq, M. A., & Darmawan, A. (2017). Pengaruh foreign direct investment, nilai tukar dan pertumbuhan ekonomi terhadap ekspor (studi pada nilai ekspor non migas indonesia periode tahun 2005-2015). Jurnal Administrasi Bisnis, 43(1), 172-179.
Huang, D., & Wu, Z. (2017). Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization. PLoS ONE, 12(2), 1-17. doi:https://doi.org/10.1371/journal.pone.0172539
Izzah, A., & Widyastuti, R. (2016). Prediksi Kelulusan Mata Kuliah Menggunakan Hybrid Fuzzy Inference System. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2(2), 60-67.
Rumokoy, N. K. (2016). Pelanggaran hukum terhadap penggunaan minyak dan gas bumi (migas) yang terkandung di dalam wilayah hukum pertambangan Indonesia oleh pihak yang tidak berwenang. Jurnal Hukum Unsrat, 22(5), 40-55.
Sedyaningrum, M., Suhadak, S., & Nuzula, N. F. (2016). Pengaruh Jumlah Nilai Ekspor, Impor Dan Pertumbuhan Ekonomi Terhadap Nilai Tukar Dan Daya Beli Masyarakat Di Indonesia Studi Pada Bank Indonesia Periode Tahun 2006:iv-2015:iii. Jurnal Administrasi Bisnis (JAB), 34(1), 114-121.
Setiawan, T. U., Taufiq, A., & Astrika, L. (2017). Pemberdayaan masyarakat berbasis koperasi pada tambang minyak tradisional desa Bangoan kecamatan Jiken kabupaten Blora. Journal of Politic and Government Studies, 6(4), 111-120.
Siregar, S. P., & Wanto, A. (2017). Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting). International Journal Of Information System & Technology, 1(1), 34-42.
Sumijan, S., Windarto, A. P., Muhammad, A., & Budiharjo, B. (2016). Implementation of Neural Networks in Predicting the Understanding Level of Students Subject. International Journal of Software Engineering and Its Applications, 10(10), 189-204.
Wang, Z.-H., Gong, D.-Y., Li, X., Li, G.-T., & Zhang, D.-H. (2017). Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA). The International Journal of Advanced Manufacturing Technology, 93(9-12), 3325–3338.
Wanto, A., Windarto, A. P., Hartama, D., & Parlina, I. (2017). Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density. International Journal Of Information System & Technology, 1(1), 43-54.
Downloads
Published
How to Cite
Issue
Section
License
Please find the rights and licenses in Register: Jurnal Ilmiah Teknologi Sistem Informasi. By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
Register's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, Register permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and Register on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
Copyright and other proprietary rights relating to the article, such as patent rights,
The right to use the substance of the article in own future works, including lectures and books,
The right to reproduce the article for own purposes,
The right to self-archive the article (please read out deposit policy),
The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Register: Jurnal Ilmiah Teknologi Sistem Informasi).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. Register will not be held liable for anything that may arise due to the author(s) internal dispute. Register will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that Register entitles the author(s) to no royalties or other fees.
7. Miscellaneous
Register will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. Register's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.