Konstruksi Forecasting System Multi-Model untuk pemodelan matematika pada peramalan Indeks Pembangunan Manusia Provinsi Nusa Tenggara Barat
DOI:
https://doi.org/10.26594/register.v4i2.1263Keywords:
Exponential Smoothing, Forecasting System Multi-Model, FSM, Human Development Index, IPA, Indeks Pembangunan Manusia, mathematical model, NTB, Nusa Tenggara Barat, pemodelan matematika, West Nusa TenggaraAbstract
Penelitian ini bertujuan untuk mengembangkan produk Forecasting System Multi-Model (FSM) guna menentukan metode terbaik dalam sistem peramalan (forecast) dengan mengkonstruksi beberapa metode dalam bentuk Graphical User Interface (GUI) Matlab dengan menghitung semua indikator tingkat akurasi guna menemukan model matematika terbaik dari data time series pada periode tertentu. Pada tahap simulasi, tim peneliti menggunakan data Indeks Pembangunan Manusia (IPM) Provinsi Nusa Tenggara Barat (NTB) tahun 2010-2017 guna memprediksi IPM NTB tahun 2018. Adapun metode yang diuji adalah Moving Average (SMA, WMA dan EMA), Exponential Smoothing Method (SES, Brown, Holt, dan Winter), Naive Method, Interpolation Method (Newton Gregory), dan Artificial Neural Network (Back Propagation). Kemudian model dievaluasi untuk melihat tingkat akurasi masing-masing metode berdasarkan nilai MAD, MSE, dan MAPE. Berdasarkan hasil simulasi data dari 10 metode yang diuji diketahui bahwa metode Holt paling akurat dengan hasil prediksi tahun 2018 sebesar 67,45 dengan MAD, MSE, dan MAPE berturut-turut sebesar 0,22654; 0,075955 dan 0,34829.
The purpose of this research is to develop a product was called Forecasting System Multi-Model (FSM) to determine the best method in the forecasting system by constructing several methods in the form of Graphical User Interface (GUI) Matlab. It was done by all indicator accuration to find the best mathematical model of time series data in a certain period. In the simulation phase, this research used the Human Development Index (HDI) data of West Nusa Tenggara (NTB) Province in 2010 - 2017 to predict the HDI data of NTB in 2018. The methods tested were Moving Average (SMA, WMA and EMA), Exponential Smoothing Method (SES, Brown, Holt, and Winter), Naive Method, Interpolation Method (Newton Gregory), and Artificial Neural Network (Back Propagation). Then the models/methods were evaluated to see the level of accuracy of each method based on the value of MAD, MSE, and MAPE. Based on data simulation result from 10 tested method known that Holt method is most accurate with prediction result of 2018 equal to 67,45 with MAD, MSE, and MAPE respectively equal to 0.22654, 0.075955 and 0.34829.
References
Andriani, Y., Silitonga, H., & Wanto, A. (2018). Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 4(1), 30-40.
Ayub, A. F., Sembok, T. M., & Luan, W. S. (2008). Teaching and Learning Calculus Using Computer. Retrieved from http://atcm.mathandtech.org/ep2008/papers_full/2412008_15028.pdf
Guangpu, L., & Yuchun, G. (2012). The Application of MATLAB in Communication Theory. Procedia Engineering, 29, 321-324.
Irawan, M. I., Syaharuddin, S., Utomo, D. B., & Rukmi, A. M. (2013). Intelligent Irrigation Water Requirement System Based on Artificial Neural Networks and Profit Optimization for Planning Time Decision Making of Crops in Lombok Island. Journal of Theoretical and Applied Information Technology, 58(3), 657-671.
Sudarsono, A. (2016). Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Bacpropagation (Studi Kasus Di Kota Bengkulu). Jurnal Media Infotama, 12(1), 61-69.
Sugiono, S. (2016). Metode Penelitian Kuantitatif, Kualitatif, dan R & D. Bandung: Alfabeta.
Suhaedi, S., Febriana, E., Syaharuddin, S., & Negara, H. (2017). Ann Back Propagation For Forecasting And Simulation Hydroclimatology Data. International Journal Of Scientific & Technology Research, 6(10), 110-114.
Surihadi, A. A. (2009). Penerapan Metode Single Moving Average Dan Exponential Smoothing Dalam Peramalan Permintaan Produk Meubel Jenis Coffee Table Pada Java Furniture Klaten. Surakarta: Universitas Sebelas Maret.
Suryani, I., & Wahono, R. S. (2015). Penerapan Exponential Smoothing untuk Transformasi Data dalam Meningkatkan Akurasi Neural Network pada Prediksi Harga Emas. Journal of Intelligent Systems, 1(2), 67-75.
Syaharuddin, S., Negara, H. R., Mandailina, V., & Sucipto, L. (2017). Calculus Problem Solution And Simulation Using GUI Of Matlab. International Journal of Scientific & Technology Research, 6(9), 275-279.
Thiagarajan, S., Semmel, M., & Semmel, D. (1974). Instructional development for training teachers of exceptional children: A sourcebook. Bloomington: Indiana University. Retrieved from https://files.eric.ed.gov/fulltext/ED090725.pdf
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Please find the rights and licenses in Register: Jurnal Ilmiah Teknologi Sistem Informasi. By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
Register's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, Register permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and Register on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
Copyright and other proprietary rights relating to the article, such as patent rights,
The right to use the substance of the article in own future works, including lectures and books,
The right to reproduce the article for own purposes,
The right to self-archive the article (please read out deposit policy),
The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Register: Jurnal Ilmiah Teknologi Sistem Informasi).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. Register will not be held liable for anything that may arise due to the author(s) internal dispute. Register will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that Register entitles the author(s) to no royalties or other fees.
7. Miscellaneous
Register will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. Register's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.