Pengenalan alat musik tradisional Bangka dengan Marker-Based Augmented Reality

Authors

DOI:

https://doi.org/10.26594/register.v5i2.1498

Keywords:

3D modelling, alat musik tradisional, Augmented Reality, marker-based, traditional musical instruments

Abstract

Dengan berkembangnya teknologi, kesadaran akan pentingnya alat musik tradisional menjadi berkurang. Demikian juga dengan alat musik tradisional Bangka yang mulai kehilangan popularitasnya. Kondisi saat ini, para remaja di Bangka kebanyakan tidak dapat memainkan alat musik tradisionalnya. Begitu juga dengan anak-anak yang belum mengetahui dan bahkan tidak mengenal alat musik tradisional daerah mereka. Jika kondisi ini dibiarkan, dikhawatirkan keberadaan alat musik tradisional Bangka akan hilang, begitu juga dengan sumber daya manusia yang dapat memainkannya. Untuk menghindari hal tersebut, dibuatlah aplikasi pengenalan alat musik tradisional Bangka menggunakan Augmented Reality (AR). AR dipilih karena dapat memberikan gambaran alat musik secara real time dalam bentuk 3D sesuai dengan pergerakan kamera smartphone yang dinamis. Empat objek 3D alat musik yakni dambus, rebab, rebanatamborin, dan gong yang dibuat menggunakan Autodesk Maya. AR yang dibangun menggunakan metode berbasis marker. Metode ini dipilih agar lebih mudah digunakan oleh pengguna yang mayoritasnya adalah anak-anak. Selain itu, kelebihan metode ini memiliki tingkat akurasi posisi yang sangat tinggi. Unity sebagai engine untuk penerapan AR 3D modelling pada sistem Android dan Vuforia SDK sebagai engine pembentuk marker augmented reality. Pengujian fungsional memiliki hasil 100% dengan sistem yang berjalan baik. Hasil pengujian kinerja deteksi objek AR berdasarkan intensitas cahaya diketahui bahwa smartphone yang memiliki dua kamera di bagian belakang dapat mendeteksi objek dengan intensitas cahaya 0 Lux pada malam hari dengan kondisi gelap, sedangkan yang hanya memiliki satu kamera tidak dapat mendeteksi objek. Pengujian warna marker mendapatkan hasil modifikasi warna marker pink, kuning, dan hitam yang masih memungkinkan untuk pendeteksian objek, walaupun objek yang tampil tidak stabil. Dari pengujian kertas marker diketahui bahwa jenis kertas tidak berpengaruh terhadap pendeteksian objek. Pengujian beta dilakukan dengan cara membagikan kuesioner terkait pengalaman pengguna dalam penggunaan sistem. Hasil survei diketahui pengguna merasa sangat setuju dengan nilai sebesar 80%, bahwa penggunaan sistem dapat membantu mereka dalam mengenal alat musik tradisional Bangka.

 

 

 

With the incessant development of technology, awareness on the importance of traditional musical instruments has declined. Similarly, teenagers living in Bangka no longer play their traditional musical instruments, and children are not exposed to their cultural heritage. However, if this continues, it is feared that the existence of traditional Bangka musical instruments will soon go extinct. To avoid this, researchers have proposed an application to identify this media using Augmented Reality (AR). This technique was chosen due to its ability to provide visuals of musical instruments in real time using 3D models in accordance with the dynamic movement of smartphone cameras. This comprises of four 3D objects namely dambus, rebab, rebanatamborin, and gong, which were designed and developed using Autodesk Maya. AR is built using marker-based methods, which was chosen for easy use because majority of its users are children, and its high level of accuracy. Unity was utilized as an engine for its implementation in the Android system, and Vuforia SDK as augmented reality marker-builder engine. Functional testing showed 100% results which means that the system is running well. From the results of the AR object detection performance test based on light intensity it is known that a smartphone with two cameras in the backside has the ability to detect objects with a light intensity of 0 Lux in dark rooms, while the other smartphone with one camera failed to detect the objects. Color testing obtained a modification of marker colors comprising of pink, yellow, and black which are still able to detect objects, although not stable. The paper test marker has no effect on object detection. Beta testing questionnaires were used to obtain information related to user experience. From the survey results, it is known that users strongly agree (80%) that the use of the system helps them to recognize traditional Bangka musical instruments.

Author Biographies

Fransiskus Panca Juniawan, STMIK Atma Luhur, Pangkalpinang

Teknik Informatika

Dwi Yuny Sylfania, STMIK Atma Luhur, Pangkalpinang

Teknik Informatika

Harrizki Arie Pradana, STMIK Atma Luhur, Pangkalpinang

Teknik Informatika

Laurentinus Laurentinus, STMIK Atma Luhur, Pangkalpinang

Teknik Informatika

References

Arifitama, B. (2017). Panduan Mudah Membuat Augmented Reality. Yogyakarta: Andi.

Autodesk, A. (2007). The Art of Maya: An Introduction to 3D Computer Graphics (4th ed.). San Rafael: Autodesk.

Bertram, D. (2016). Likert Scales. Retrieved from Sciepub.com: http://my.ilstu.edu/~eostewa/497/Likert%20topic-dane-likert.pdf

Brata, K. C., Brata, A. H., & Pramana, Y. A. (2018). Pengembangan Aplikasi Mobile Augmented Reality Untuk Mendukung Pengenalan Koleksi Museum. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 5(3), 347-352.

Cheng, J. C., Chen, K., & Chen, W. (2017). Comparison of Marker-based AR and Marker-less AR: A Case Study on Indoor Decoration System. Lean and Computing in Construction Congress (LC3): Proceedings of the Joint Conference on Computing in Construction (JC3), (pp. 483-490).

CSIS, C. (2017). Ada Apa dengan Milenial? Orientasi Sosial, Ekonomi dan Politik. Jakarta: CSIS. Retrieved from https://www.csis.or.id/uploaded_file/event/ada_apa_dengan_milenial____paparan_survei_nasional_csis_mengenai_orientasi_ekonomi__sosial_dan_politik_generasi_milenial_indonesia__notulen.pdf

Duda, R. O., Hart, P. E., & Stork, D. G. (1975). Pattern Classi cation and Scene Analysis. Part 1: Pattern Classification (2nd ed ed.). Retrieved from www.svms.org/classification/DuHS95.pdf

Eti, N. Y. (2019). Selayang Pandang Kepulauan Bangka Belitung. Klaten: Intan Pariwara.

Gil-Gómez, J.-A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C., Gil-Gómez, H., & Lozano-Quilis, J.-A. (2017). USEQ: A Short Questionnaire for Satisfaction Evaluation of Virtual Rehabilitation Systems. Sensors, 17(7), 1589.

Ginting, S. L., & Sofyan, F. (2018). Aplikasi pengenalan alat musik tradisional Indonesia menggunakan metode based Marker Augmented Reality berbasis Android. Majalah Ilmiah Unikom, 15(2), 139-154.

Grubert, J., & Grasset, R. (2013). Augmented Reality for Android Application Development. Birmingham, United Kingdom: Packt Publishing Ltd.

Hamari, J., Malik, A., Koski, J., & Johri, A. (2019). Uses and Gratifications of Pokémon Go: Why do People Play Mobile Location-Based Augmented Reality Games? International Journal of Human–Computer Interaction, 35(9), 804-819.

Illumenate, I. (n.d.). Lighting Levels Guidelines and Definitions. Retrieved from Illumenate: www.illumenate.com/lightlevels.htm

Indrawan, I. W., Bayupati, I. P., & Putri, D. P. (2018). Markerless Augmented Reality Utilizing Gyroscope to Demonstrate the Position of Dewata Nawa Sanga. International Journal of Interactive Mobile Technologies (iJIM), 12(1), 19-35.

Juan, C., YuLin, W., W., T. D., & Wei, S. (2018). Construction of Interactive Teaching System for Course of Mechanical Drawing Based on Mobile Augmented Reality Technology. International Journal of Emerging Technologies in Learning, 13(2), 126-139.

Katiyar, A., Kalra, K., & Garg, C. (2015). Marker Based Augmented Reality. Advances in Computer Science and Information Technology (ACSIT), 2(5), 441-445.

Khan, T., Johnston, K., & Ophoff, J. (2019). The Impact of an Augmented Reality Application on Learning Motivation of Students. Advances in Human-Computer Interaction Volume 2019, 14.

Kumar, S. (2016, Marh 12). 7 Amazing Facts about Augmented Reality: Your Tech World. Retrieved from AugRealityPedia (ARP): https://www.augrealitypedia.com/7-amazing-facts-augmented-reality-tech/

Linowes, J., & Babilinski, K. (2017). Augmented Reality for Developers: Build practical augmented reality applications with Unity, ARCore, ARKit, and Vuforia. Birmingham, United Kingdom: Packt Publishing.

Medina, M. A., García, C. F., & Olguín, M. J. (2018). Planning and Allocation of Digital Learning Objects with Augmented Reality to Higher Education Students According to the VARK Model. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 53-57.

Mubah, A. S. (2011). Strategi Meningkatkan Daya Tahan Budaya Lokal dalam Menghadapi Arus Globalisasi. Jurnal Unair, 24(4), 302-308.

Nuanmeesri, S. (2018). The Augmented Reality for Teaching Thai Students about the Human Hear. International Journal of Emerging Technologies in Learning (iJET), 13(6), 203-213.

Roongrungsi, A., Namahoot, C., & Brückner, M. (2017). Augmented reality application for cultural and historical tourist attraction display (ARCH-TOUR). Journal of Telecommunication, Electronic and Computer Engineering, 9(2-4), 65-69.

Shang, L. W., Zakaria, M. H., & Ahmad, I. (2016). Mobile Phone Augmented Reality Postcard. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(2), 135-139.

Siltanen, S. (2012). Theory and applications of marker-based augmented reality. Espoo: Julkaisija Utgivare publisher. Retrieved from https://www.vtt.fi/inf/pdf/science/2012/S3.pdf

Sylfania, D. Y. (2016). Penggunaan Augmented Reality Untuk Brosur Penjualan Laptop Berbasis Android. Jurnal Teknologi Informatika dan Komputer Atma Luhur, 3(1), 28-36.

ToolBox, E. (2004). Illuminance - Recommended Light Level. Retrieved from The Engineering ToolBox: https://www.engineeringtoolbox.com/light-level-rooms-d_708.html

Turcanu, C., Prodea, B. M., & Constantin, C. (2018). The Opportunity Of Using Augmented Reality In Educating Disadvantaged Children. Bulletin of the Transilvania University of Brasov. Economic Sciences, 11(1), 71-78.

Wahyudi, A. K., Kairupan, Y. J., & Masengi, Y. C. (2018). Alat Peraga Jantung Manusia Berbasis Augmented Reality dengan Menggunakan Teknik 3D Object Tracking. Cogito Smart Journal, 4(1), 46-59.

Wai, Y. J., & Manap, N. A. (2018). Interactive Objects for Augmented Reality by Using Oculus Rift and Motion Sensor. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2-6), 149-153.

Zarraonandia, T., Aedo, I., Díaz, P., & Montes, A. M. (2014). Augmented Presentations: Supporting the Communication in Presentations by Means of Augmented Reality. International Journal of Human-Computer Interaction, 30(10), 829-838.

Zhao, Y., Chen, C., & Zhao, Y. (2016). The Application of Augmented Reality in University. The 2016 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2016). Shenyang, China: Atlantis Press.

Downloads

Published

2019-06-01

How to Cite

[1]
F. P. Juniawan, D. Y. Sylfania, H. A. Pradana, and L. Laurentinus, “Pengenalan alat musik tradisional Bangka dengan Marker-Based Augmented Reality”, regist. j. ilm. teknol. sist. inf., vol. 5, no. 2, pp. 77–93, Jun. 2019.

Issue

Section

Article