A Bibliometric Analysis of Metaheuristic Research and Its Applications

Authors

  • Hendy Hendy Institut Teknologi Sepuluh Nopember
  • Mohammad Isa Irawan Institut Teknologi Sepuluh Nopember http://orcid.org/0000-0001-5496-599X
  • Imam Mukhlash Institut Teknologi Sepuluh Nopember
  • Samsul Setumin Universiti Teknologi MARA

DOI:

https://doi.org/10.26594/register.v9i1.2675

Keywords:

Bibliometric Analysis, Vosviewer, Metaheuristics algorithm, Metaheuristics survey

Abstract

Metaheuristic algorithms are generic optimization tools to solve complex problems with extensive search spaces. This algorithm minimizes the size of the search space by using effective search strategies. Research on metaheuristic algorithms continues to grow and is widely applied to solve big data problems. This study aims to provide an analysis of the performance of metaheuristic research and to map a description of the themes of the metaheuristic research method. Using bibliometric analysis, we examined the performance of scientific articles and described the available opportunities for metaheuristic research methods. This study presents the performance analysis and bibliometric review of metaheuristic research documents indexed in the Scopus database between the period of 2016-2021. The overall number of papers published at the global level was 3846. At global optimization, heuristic methods, scheduling, genetic algorithms, evolutionary algorithms, and benchmarking dominate metaheuristic research. Meanwhile, the discussion on adaptive neuro-fuzzy inference, forecasting, feature selection, biomimetics, exploration, and exploitation, are growing hot issues for research in this field. The current research reveals a unique overview of metaheuristic research at the global level from 2016-2021, and this could be valuable for conducting future research.

Author Biographies

Hendy Hendy, Institut Teknologi Sepuluh Nopember

Department of Mathematics

Mohammad Isa Irawan, Institut Teknologi Sepuluh Nopember

Department of Mathematics

Imam Mukhlash, Institut Teknologi Sepuluh Nopember

Department of Mathematics

Samsul Setumin, Universiti Teknologi MARA

Faculty of Electrical Engineering

References

E. Cuevas and A. Rodriguez, Metaheuristic Computation with MATLAB®, 1st ed. Boca Raton, FL, USA: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9781003006312.

M. O. Okwu and L. K. Tartibu, Metaheuristic Optimization?: Nature-Inspired Algorithms Swarm and Computational Intelligence , Theory and Applications. Vol. 927. Springer Nature, 2020.

A. E. Ezugwu et al., Metaheuristics: a comprehensive overview and classification along with bibliometric analysis, vol. 54, no. 6. Springer Netherlands, 2021.

J. Kratica, V. Kova?evi?-vuj?i?, and M. ?angalovi?, “Computing Strong Metric Dimension of Some,” Yugosl. J. Oper. Res., vol. 18, no. 2, pp. 143–151, 2008, doi: 10.2298/YUJOR0802143K.

J. Kratica, V. Kova?evi?-Vuj?i?, and M. ?angalovi?, “Computing the metric dimension of graphs by genetic algorithms,” Comput. Optim. Appl., vol. 44, no. 2, pp. 343–361, 2009, doi: 10.1007/s10589-007-9154-5.

A. Hertz, “An IP-based swapping algorithm for the metric dimension and minimal doubly resolving set problems in hypercubes,” Optim. Lett., vol. 14, no. 2, pp. 355–367, 2020, doi: 10.1007/s11590-017-1184-z.

C. Archetti, A. Hertz, and M. G. Speranza, “Metaheuristics for the team orienteering problem,” J. Heuristics, 2007, doi: 10.1007/s10732-006-9004-0.

N. H. Bong and Y. Lin, “Some properties of the multiset dimension of graphs,” Electron. J. Graph Theory Appl., vol. 9, no. 1, pp. 215–221, 2021, doi: 10.5614/ejgta.2021.9.1.19.

H. Hendy and M. I. Marzuki, “Bi-Dimensi Metrik Dari Graf Antiprisma,” Maj. Ilm. Mat. dan Stat., vol. 20, no. 2, p. 53, 2020, doi: 10.19184/mims.v20i2.19639.

J. Izquierdo, I. Montalvo, R. Pérez, and M. Tavera, “Optimization in water systems: A PSO approach,” Proc. 2008 Spring Simul. Multiconference, SpringSim’08, pp. 239–246, 2008, doi: 10.1145/1400549.1400581.

M. Abd Elaziz, D. Oliva, and S. Xiong, “An improved Opposition-Based Sine Cosine Algorithm for global optimization,” Expert Syst. Appl., vol. 90, pp. 484–500, 2017, doi: 10.1016/j.eswa.2017.07.043.

M. Siavashi and M. Yazdani, “A Comparative Study of Genetic and Particle Swarm Optimization Algorithms and Their Hybrid Method in Water Flooding Optimization,” J. Sol. Energy Eng. Trans. ASME, vol. 140, no. 10, pp. 1–10, 2018, doi: 10.1115/1.4040059.

A. Cheraghalipour, M. Hajiaghaei-Keshteli, and M. M. Paydar, “Tree Growth Algorithm (TGA): A novel approach for solving optimization problems,” Eng. Appl. Artif. Intell., vol. 72, no. February, pp. 393–414, 2018, doi: 10.1016/j.engappai.2018.04.021.

S., “Effectiveness of Several Metaheuristic Methods to Analyze Hydraulic Parameters in a Drinking Water Distribution Network,” World J. Eng. Technol., vol. 08, no. 03, pp. 456–484, 2020, doi: 10.4236/wjet.2020.83034.

G. Bekda? and S. M. Nigdeli, “Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction,” Soil Dyn. Earthq. Eng., vol. 92, no. August 2016, pp. 443–461, 2017, doi: 10.1016/j.soildyn.2016.10.019.

L. T. Kóczy, P. Földesi, and B. Tü?-Szabó, “An effective Discrete Bacterial Memetic Evolutionary Algorithm for the Traveling Salesman Problem,” Int. J. Intell. Syst., vol. 32, no. 8, pp. 862–876, 2017, doi: 10.1002/int.21893.

S. Talatahari and M. Azizi, “Optimization of constrained mathematical and engineering design problems using chaos game optimization,” Comput. Ind. Eng., vol. 145, p. 106560, 2020, doi: 10.1016/j.cie.2020.106560.

S. Balochian and H. Baloochian, “Social mimic optimization algorithm and engineering applications,” Expert Syst. Appl., vol. 134, pp. 178–191, 2019, doi: 10.1016/j.eswa.2019.05.035.

S. Shadravan, H. R. Naji, and V. K. Bardsiri, “The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems,” Eng. Appl. Artif. Intell., vol. 80, no. July 2018, pp. 20–34, 2019, doi: 10.1016/j.engappai.2019.01.001.

A. Kaveh, H. Akbari, and S. M. Hosseini, “Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems,” Eng. Comput. (Swansea, Wales), vol. 38, no. 4, pp. 1554–1606, 2020, doi: 10.1108/EC-05-2020-0235.

M. B. Agbaje, A. E. Ezugwu, and R. Els, “Automatic data clustering using hybrid firefly particle swarm optimization algorithm,” IEEE Access, vol. 7, pp. 184963–184984, 2019, doi: 10.1109/ACCESS.2019.2960925.

A. Shabani, B. Asgarian, S. A. Gharebaghi, M. A. Salido, and A. Giret, “A New Optimization Algorithm Based on Search and Rescue Operations,” Math. Probl. Eng., vol. 2019, 2019, doi: 10.1155/2019/2482543.

T. Rahkar Farshi, “Battle royale optimization algorithm,” Neural Comput. Appl., vol. 33, no. 4, pp. 1139–1157, 2021, doi: 10.1007/s00521-020-05004-4.

F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, “Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems,” Appl. Intell., vol. 51, no. 3, pp. 1531–1551, 2021, doi: 10.1007/s10489-020-01893-z.

E. Triandini, R. Fauzan, D. O. Siahaan, S. Rochimah, I. G. Suardika, and D. Karolita, “Software similarity measurements using UML diagrams: A systematic literature review,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 8, no. 1, p. 10, 2021, doi: 10.26594/register.v8i1.2248.

J. W. Goodell, S. Kumar, W. M. Lim, and D. Pattnaik, “Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis,” J. Behav. Exp. Financ., vol. 32, p. 100577, 2021, doi: 10.1016/j.jbef.2021.100577.

N. J. Van Eck, L. Waltman, R. Dekker, and J. Van Den Berg, “A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS,” J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 12, pp. 2405–2416, 2010, doi: 10.1002/asi.21421.

B. Ranjbar-Sahraei and R. R. Negenborn, “Research Positioning & Trend Identification,” TU Delft, 2017.

E. K. Aribowo, “Analisis Bibliometrik Berkala Ilmiah Names: Journal of Onomastics Dan Peluang Riset Onomastik Di Indonesia,” Aksara, vol. 31, no. 1, p. 85, 2019, doi: 10.29255/aksara.v31i1.373.85-105.

K. Devika, A. Jafarian, and V. Nourbakhsh, “Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques,” Eur. J. Oper. Res., vol. 235, no. 3, pp. 594–615, 2014, doi: 10.1016/j.ejor.2013.12.032.

R. Liu, X. Xie, V. Augusto, and C. Rodriguez, “Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care,” Eur. J. Oper. Res., vol. 230, no. 3, pp. 475–486, 2013, doi: 10.1016/j.ejor.2013.04.044.

S. Nickel, M. Schröder, and J. Steeg, “Mid-term and short-term planning support for home health care services,” Eur. J. Oper. Res., vol. 219, no. 3, pp. 574–587, 2012, doi: 10.1016/j.ejor.2011.10.042.

A. Herrán, J. Manuel Colmenar, and A. Duarte, “An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem,” Eur. J. Oper. Res., vol. 295, no. 3, pp. 893–907, 2021, doi: 10.1016/j.ejor.2021.03.027.

D. Oliva et al., “Opposition-based moth swarm algorithm,” Expert Syst. Appl., vol. 184, no. December 2019, 2021, doi: 10.1016/j.eswa.2021.115481.

Z. Li and M. N. Janardhanan, “Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem,” Expert Syst. Appl., vol. 183, no. June, p. 115431, 2021, doi: 10.1016/j.eswa.2021.115431.

S. Chakraborty and K. Mali, “Fuzzy Electromagnetism Optimization (FEMO) and its application in biomedical image segmentation,” Appl. Soft Comput. J., vol. 97, p. 106800, 2020, doi: 10.1016/j.asoc.2020.106800.

J. J. Q. Yu and V. O. K. Li, “A social spider algorithm for global optimization,” Appl. Soft Comput. J., vol. 30, pp. 614–627, 2015, doi: 10.1016/j.asoc.2015.02.014.

A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim, “Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems,” Appl. Soft Comput. J., vol. 30, pp. 58–71, 2015, doi: 10.1016/j.asoc.2015.01.050.

H. Yapici and N. Cetinkaya, “A new meta-heuristic optimizer: Pathfinder algorithm,” Appl. Soft Comput. J., vol. 78, pp. 545–568, 2019, doi: 10.1016/j.asoc.2019.03.012.

K. Govindan, A. Jafarian, and V. Nourbakhsh, “Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic,” Comput. Oper. Res., vol. 62, pp. 112–130, 2015, doi: 10.1016/j.cor.2014.12.014.

B. Peng, Z. Lü, and T. C. E. Cheng, “A tabu search/path relinking algorithm to solve the job shop scheduling problem,” Comput. Oper. Res., vol. 53, pp. 154–164, 2015, doi: 10.1016/j.cor.2014.08.006.

M. Hughes, M. Goerigk, and T. Dokka, “Automatic generation of algorithms for robust optimisation problems using Grammar-Guided Genetic Programming,” Comput. Oper. Res., vol. 133, no. October 2020, p. 105364, 2021, doi: 10.1016/j.cor.2021.105364.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

M. M. Mafarja and S. Mirjalili, “Hybrid Whale Optimization Algorithm with simulated annealing for feature selection,” Neurocomputing, vol. 260, pp. 302–312, 2017, doi: 10.1016/j.neucom.2017.04.053.

X. S. Yang, M. Karamanoglu, and X. He, “Flower pollination algorithm: A novel approach for multiobjective optimization,” Eng. Optim., vol. 46, no. 9, pp. 1222–1237, 2014, doi: 10.1080/0305215X.2013.832237.

S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime mould algorithm: A new method for stochastic optimization,” Futur. Gener. Comput. Syst., vol. 111, pp. 300–323, 2020, doi: 10.1016/j.future.2020.03.055.

S. Arora and S. Singh, “Butterfly optimization algorithm: a novel approach for global optimization,” Soft Comput., vol. 23, no. 3, pp. 715–734, 2019, doi: 10.1007/s00500-018-3102-4.

A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, “Equilibrium optimizer: A novel optimization algorithm,” Knowledge-Based Syst., vol. 191, 2020, doi: 10.1016/j.knosys.2019.105190.

L. M. Abualigah and A. T. Khader, “Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering,” J. Supercomput., vol. 73, no. 11, pp. 4773–4795, 2017, doi: 10.1007/s11227-017-2046-2.

H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies,” Futur. Gener. Comput. Syst., vol. 111, pp. 175–198, 2020, doi: 10.1016/j.future.2020.04.008.

H. Wang and J. H. Yi, “An improved optimization method based on krill herd and artificial bee colony with information exchange,” Memetic Comput., vol. 10, no. 2, pp. 177–198, 2018, doi: 10.1007/s12293-017-0241-6.

G. G. Wang, “Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems,” Memetic Comput., vol. 10, no. 2, pp. 151–164, 2018, doi: 10.1007/s12293-016-0212-3.

G. G. Wang, S. Deb, and L. Dos Santos Coelho, “Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems,” Int. J. Bio-Inspired Comput., vol. 12, no. 1, pp. 1–22, 2018, doi: 10.1504/ijbic.2018.093328.

A. A. Heidari, R. Ali Abbaspour, and H. Chen, “Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training,” Appl. Soft Comput. J., vol. 81, p. 105521, 2019, doi: 10.1016/j.asoc.2019.105521.

M. Mafarja et al., “Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems,” Knowledge-Based Syst., vol. 145, pp. 25–45, 2018, doi: 10.1016/j.knosys.2017.12.037.

M. Mafarja, I. Aljarah, H. Faris, A. I. Hammouri, A. M. Al-Zoubi, and S. Mirjalili, “Binary grasshopper optimisation algorithm approaches for feature selection problems,” Expert Syst. Appl., vol. 117, pp. 267–286, 2019, doi: 10.1016/j.eswa.2018.09.015.

G. I. Sayed, A. Tharwat, and A. E. Hassanien, “Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection,” Appl. Intell., vol. 49, no. 1, pp. 188–205, 2019, doi: 10.1007/s10489-018-1261-8.

T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation metaheuristic algorithms,” Comput. Ind. Eng., vol. 137, no. August, p. 106040, 2019, doi: 10.1016/j.cie.2019.106040.

M. Li and X. Yao, Quality evaluation of solution sets in multiobjective optimisation: A survey, vol. 52, no. 2. 2019.

G. G. Wang, A. H. Gandomi, A. H. Alavi, and D. Gong, “A comprehensive review of krill herd algorithm: variants, hybrids and applications,” Artif. Intell. Rev., vol. 51, no. 1, pp. 119–148, 2019, doi: 10.1007/s10462-017-9559-1.

W. Zhao, L. Wang, and Z. Zhang, “Atom search optimization and its application to solve a hydrogeologic parameter estimation problem,” Knowledge-Based Syst., vol. 163, pp. 283–304, 2019, doi: 10.1016/j.knosys.2018.08.030.

S. Khalilpourazari and S. Khalilpourazary, “An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems,” Soft Comput., vol. 23, no. 5, pp. 1699–1722, 2019, doi: 10.1007/s00500-017-2894-y.

E. H. Houssein, M. E. Hosney, D. Oliva, W. M. Mohamed, and M. Hassaballah, “A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery,” Comput. Chem. Eng., vol. 133, p. 106656, 2020, doi: 10.1016/j.compchemeng.2019.106656.

S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,” Knowledge-Based Syst., vol. 89, no. July, pp. 228–249, 2015, doi: 10.1016/j.knosys.2015.07.006.

M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theor. Comput. Sci., vol. 344, no. 2–3, pp. 243–278, 2005, doi: 10.1016/j.tcs.2005.05.020.

A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12, pp. 4831–4845, 2012, doi: 10.1016/j.cnsns.2012.05.010.

P. Hansen and N. Mladenovi?, “Variable neighborhood search: Principles and applications,” Eur. J. Oper. Res., 2001, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221700001004.

A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems,” Eng. Comput., vol. 29, no. 1, pp. 17–35, 2013, doi: 10.1007/s00366-011-0241-y.

X. S. Yang and A. H. Gandomi, “Bat algorithm: A novel approach for global engineering optimization,” Eng. Comput. (Swansea, Wales), vol. 29, no. 5, pp. 464–483, 2012, doi: 10.1108/02644401211235834.

K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, 2008, doi: 10.1016/j.ejor.2006.06.046.

A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Comput. Struct., vol. 169, pp. 1–12, 2016, doi: 10.1016/j.compstruc.2016.03.001.

M. Y. Cheng and D. Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm,” Comput. Struct., vol. 139, pp. 98–112, 2014, doi: 10.1016/j.compstruc.2014.03.007.

M. Bräysy, O., Gendreau, “Vehicle routing problem with time windows, Part I: Route construction and local search algorithms,” Transp. Sci., vol. 39, no. 1, pp. 104–118, 2005, doi: 10.1287/trsc.1030.0056.

M. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, “Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems,” Comput. Struct., vol. 110–111, pp. 151–166, 2012, doi: 10.1016/j.compstruc.2012.07.010.

M. Lodi, A., Martello, S., Monaci, “Two-dimensional packing problems: A survey,” Eur. J. Oper. Res., vol. 141, no. 2, pp. 241–252, 2002, doi: 10.1016/S0377-2217(02)00123-6.

S. Yang, X.-S., Deb, “Multiobjective cuckoo search for design optimization,” Comput. Oper. Res., vol. 40, no. 6, pp. 1616–1624, 2013, doi: 10.1016/j.cor.2011.09.026.

A. H. Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, “Firefly algorithm with chaos,” Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 1, pp. 89–98, 2013, doi: 10.1016/j.cnsns.2012.06.009.

S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. D. S. Coelho, “Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization,” Expert Syst. Appl., vol. 47, pp. 106–119, 2016, doi: 10.1016/j.eswa.2015.10.039.

R. Glover, F., Laguna, M., Martí, “Fundamentals of scatter search and path relinking,” Control Cybern., vol. 29, no. 3, pp. 652–684, 2000, [Online]. Available: https://www.scopus.com/record/display.uri?eid=2-s2.0-0347899800&origin=resultslist&sort=cp-f&src=s&st1=Fundamentals+of+scatter+search+and+path+relinking&sid=e52596b622887abdfafa27fb552879e4&sot=b&sdt=b&sl=64&s=TITLE-ABS-KEY%28Fundamentals+of+scatter+search+and+path+relinking%29&relpos=0&citeCnt=565&searchTerm=.

P. Hansen, N. Mladenovi?, and J. A. Moreno Pérez, “Variable neighbourhood search: Methods and applications,” Ann. Oper. Res., vol. 175, no. 1, pp. 367–407, 2010, doi: 10.1007/s10479-009-0657-6.

A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Comput. Oper. Res., vol. 33, no. 3, pp. 859–871, 2006, doi: 10.1016/j.cor.2004.08.012.

B. F. Harman, M., Jones, “Search-based software engineering,” Inf. Softw. Technol., vol. 43, no. 14, pp. 833–839, 2001, doi: 10.1016/S0950-5849(01)00189-6.

A. H. Gandomi, A.H., Yang, X.-S., Alavi, “Mixed variable structural optimization using Firefly Algorithm,” Comput. Struct., vol. 89, no. 23–24, pp. 2325–2336, 2011, doi: 10.1016/j.compstruc.2011.08.002.

P. Czyz?ak and A. Jaszkiewicz, “Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization,” J. Multi-Criteria Decis. Anal., vol. 7, no. 1, pp. 34–47, 1998, doi: 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6.

F. S. Abu-Mouti and M. E. El-Hawary, “Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2090–2101, 2011, doi: 10.1109/TPWRD.2011.2158246.

W. Kuo and V. Rajendra Prasad, “An annotated overview of system-reliability optimization,” IEEE Trans. Reliab., vol. 49, no. 2, pp. 176–187, 2000, doi: 10.1109/24.877336.

X. S. Yang, S. S. S. Hosseini, and A. H. Gandomi, “Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect,” Appl. Soft Comput. J., vol. 12, no. 3, pp. 1180–1186, 2012, doi: 10.1016/j.asoc.2011.09.017.

M. Schneider, A. Stenger, and D. Goeke, “The electric vehicle-routing problem with time windows and recharging stations,” Transp. Sci., vol. 48, no. 4, pp. 500–520, 2014, doi: 10.1287/trsc.2013.0490.

B. Menéndez, M. Bustillo, E. G. Pardo, and A. Duarte, “General Variable Neighborhood Search for the Order Batching and Sequencing Problem,” Eur. J. Oper. Res., vol. 263, no. 1, pp. 82–93, 2017, doi: 10.1016/j.ejor.2017.05.001.

A. Herrán, J. M. Colmenar, R. Martí, and A. Duarte, “A parallel variable neighborhood search approach for the obnoxious p-median problem,” Int. Trans. Oper. Res., vol. 27, no. 1, pp. 336–360, 2020, doi: 10.1111/itor.12510.

A. Duarte, R. Martí, A. Álvarez, and F. Ángel-Bello, “Metaheuristics for the linear ordering problem with cumulative costs,” Eur. J. Oper. Res., vol. 216, no. 2, pp. 270–277, 2012, doi: 10.1016/j.ejor.2011.07.036.

M. Gallego, M. Laguna, R. Martí, and A. Duarte, “Tabu search with strategic oscillation for the maximally diverse grouping problem,” J. Oper. Res. Soc., vol. 64, no. 5, pp. 724–734, 2013, doi: 10.1057/jors.2012.66.

J. J. Pantrigo, R. Martí, A. Duarte, and E. G. Pardo, “Scatter search for the cutwidth minimization problem,” Ann. Oper. Res., vol. 199, no. 1, pp. 285–304, 2012, doi: 10.1007/s10479-011-0907-2.

R. Martí, M. G. C. Resende, and C. C. Ribeiro, “Multi-start methods for combinatorial optimization,” Eur. J. Oper. Res., vol. 226, no. 1, pp. 1–8, 2013, doi: 10.1016/j.ejor.2012.10.012.

J. Peiró, I. Jiménez, J. Laguardia, and R. Martí, “Heuristics for the capacitated dispersion problem,” Int. Trans. Oper. Res., vol. 28, no. 1, pp. 119–141, 2021, doi: 10.1111/itor.12799.

J. M. Colmenar, P. Greistorfer, R. Martí, and A. Duarte, “Advanced Greedy Randomized Adaptive Search Procedure for the Obnoxious p-Median problem,” Eur. J. Oper. Res., vol. 252, no. 2, pp. 432–442, 2016, doi: 10.1016/j.ejor.2016.01.047.

E. Pinana, I. Plana, V. Campos, and R. Mart?, “GRASP and path relinking for the matrix bandwidth minimization,” … J. Oper. Res., 2004, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221702007154.

A. Napoletano, A. Martínez-Gavara, P. Festa, T. Pastore, and R. Martí, “Heuristics for the Constrained Incremental Graph Drawing Problem,” Eur. J. Oper. Res., vol. 274, no. 2, pp. 710–729, 2019, doi: 10.1016/j.ejor.2018.10.017.

J. Sánchez-Oro, A. Martínez-Gavara, M. Laguna, A. Duarte, and R. Martí, “Variable neighborhood descent for the incremental graph drawing,” Electron. Notes Discret. Math., vol. 58, pp. 183–190, 2017, doi: 10.1016/j.endm.2017.03.024.

R. Martí, V. Campos, A. Hoff, and J. Peiró, “Heuristics for the min–max arc crossing problem in graphs,” Expert Syst. Appl., vol. 109, pp. 100–113, 2018, doi: 10.1016/j.eswa.2018.05.008.

T. Pastore, A. Martínez-Gavara, A. Napoletano, P. Festa, and R. Martí, “Tabu search for min-max edge crossing in graphs,” Comput. Oper. Res., vol. 114, 2020, doi: 10.1016/j.cor.2019.104830.

F. Glover, V. Campos, and R. Martí, Tabu search tutorial. A Graph Drawing Application, vol. 29, no. 2. Springer Berlin Heidelberg, 2021.

A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, “A stochastic multi-objective model for a closed-loop supply chain with environmental considerations,” Appl. Soft Comput. J., vol. 69, pp. 232–249, 2018, doi: 10.1016/j.asoc.2018.04.055.

M. Hajiaghaei-Keshteli and A. M. Fathollahi Fard, Sustainable closed-loop supply chain network design with discount supposition, vol. 31, no. 9. Springer London, 2019.

A. Salehi-Amiri, A. Zahedi, N. Akbapour, and M. Hajiaghaei-Keshteli, “Designing a sustainable closed-loop supply chain network for walnut industry,” Renew. Sustain. Energy Rev., vol. 141, no. January, p. 110821, 2021, doi: 10.1016/j.rser.2021.110821.

B. Mosallanezhad, V. K. Chouhan, M. M. Paydar, and M. Hajiaghaei-Keshteli, “Disaster relief supply chain design for personal protection equipment during the COVID-19 pandemic,” Appl. Soft Comput., vol. 112, p. 107809, 2021, doi: 10.1016/j.asoc.2021.107809.

B. Mosallanezhad, M. Hajiaghaei-Keshteli, and C. Triki, “Shrimp closed-loop supply chain network design,” Soft Comput., vol. 25, no. 11, pp. 7399–7422, 2021, doi: 10.1007/s00500-021-05698-1.

A. Samadi, N. Mehranfar, A. M. Fathollahi Fard, and M. Hajiaghaei-Keshteli, “Heuristic-based metaheuristics to address a sustainable supply chain network design problem,” J. Ind. Prod. Eng., vol. 35, no. 2, pp. 102–117, 2018, doi: 10.1080/21681015.2017.1422039.

A. Cheraghalipour, M. M. Paydar, and M. Hajiaghaei-Keshteli, “Designing and solving a bi-level model for rice supply chain using the evolutionary algorithms,” Comput. Electron. Agric., vol. 162, no. November 2017, pp. 651–668, 2019, doi: 10.1016/j.compag.2019.04.041.

A. Abdi, A. Abdi, A. M. Fathollahi-Fard, and M. Hajiaghaei-Keshteli, “A set of calibrated metaheuristics to address a closed-loop supply chain network design problem under uncertainty,” Int. J. Syst. Sci. Oper. Logist., vol. 8, no. 1, pp. 23–40, 2021, doi: 10.1080/23302674.2019.1610197.

V. K. Chouhan, S. H. Khan, M. Hajiaghaei-Keshteli, and S. Subramanian, “Multi-facility-based improved closed-loop supply chain network for handling uncertain demands,” Soft Comput., vol. 24, no. 10, pp. 7125–7147, 2020, doi: 10.1007/s00500-020-04868-x.

Y. Liao, M. Kaviyani-Charati, M. Hajiaghaei-Keshteli, and A. Diabat, “Designing a closed-loop supply chain network for citrus fruits crates considering environmental and economic issues,” J. Manuf. Syst., vol. 55, no. February, pp. 199–220, 2020, doi: 10.1016/j.jmsy.2020.02.001.

“Integrated-capacitated-transportation-and-production-scheduling-problem-in-a-fuzzy-environmentInternational-Journal-of-Industrial-Engineering-and-Production-Research.pdf.” .

S. Sadeghi-Moghaddam, M. Hajiaghaei-Keshteli, and M. Mahmoodjanloo, “New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment,” Neural Comput. Appl., vol. 31, pp. 477–497, 2019, doi: 10.1007/s00521-017-3027-3.

M. Hajiaghaei-Keshteli and M. Aminnayeri, “Solving the integrated scheduling of production and rail transportation problem by Keshtel algorithm,” Appl. Soft Comput. J., vol. 25, pp. 184–203, 2014, doi: 10.1016/j.asoc.2014.09.034.

A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, and R. Tavakkoli-Moghaddam, “A bi-objective green home health care routing problem,” J. Clean. Prod., vol. 200, pp. 423–443, 2018, doi: 10.1016/j.jclepro.2018.07.258.

M. Hajiaghaei-Keshteli and A. M. Fathollahi-Fard, “A set of efficient heuristics and metaheuristics to solve a two-stage stochastic bi-level decision-making model for the distribution network problem,” Comput. Ind. Eng., vol. 123, pp. 378–395, 2018, doi: 10.1016/j.cie.2018.07.009.

Downloads

Published

2023-01-07

How to Cite

[1]
H. Hendy, M. I. Irawan, I. Mukhlash, and S. Setumin, “A Bibliometric Analysis of Metaheuristic Research and Its Applications”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 9, no. 1, pp. 1–17, Jan. 2023.

Issue

Section

Article