Enhanced PBFT Blockchain based on a Combination of Ripple and PBFT (R-PBFT) to Cryptospatial Coordinate

Authors

  • Achmad Teguh wibowo atw@uinsby.ac.id
  • Mochamad Hariadi Dept. of Electrical Engineering Faculty of Intelligent Electrical and Informatics Technology (ELECTICS), Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Suhartono Department of Informatics Engineering, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Muhammad Shodiq Faculty of Social and Politic, UIN Sunan Ampel, Surabaya

DOI:

https://doi.org/10.26594/register.v8i2.3041

Keywords:

Blockchain, PBFT, PNPOLY, RPCA, R-PBFT

Abstract

In this research, we introduce the combination of two Blockchain methods. Ripple Protocol Consensus Algorithm (RPCA) and Practical Byzantine Fault Tolerance (PBFT) are applied to cryptospatial coordinates to support cultural heritage tourism. The PBFT process is still used until the preparation process to ensure a maximum error of 33%, and every node would add a new chain in all nodes, so PBFT has a slower processing speed than other methods. This research cuts the PBFT process. After the preparation process in PBFT, the data was entered into the RPCA node and was calculated using an equation to minimize errors with a maximum limit of 20%. After this process, the was were sent to the commit process to store the data in all connected nodes in the Blockchain network; we call this combination of two methods R-PBFT. Combining the two methods can enhance data processing security and speed because it still uses the PBFT work combined with the speed of RPCA. Furthermore, this method uses a fault tolerance value from the RPCA of 20% to enhance data processing security and speed.

References

A. T. Wibowo, M. Y. Teguh Sulistyono, and M. Hariadi, “Cryptospatial Coordinate Using The Rpca Based On A Point In Polygon Test For Cultural Heritage Tourism,” Commun. - Sci. Lett. Univ. Zilina, vol. 22, no. 4, pp. 211–217, 2020, doi: 10.26552/com.C.2020.4.211-217.

D. Efanov and P. Roschin, “The All-Pervasiveness of the Blockchain Technology,” Procedia Comput. Sci., vol. 123, pp. 116–121, 2018, doi: 10.1016/j.procs.2018.01.019.

S. Zhang and J.-H. Lee, “Analysis of the Main Consensus Protocols of Blockchain,” ICT Express, no. 2, pp. 1–5, 2019, doi: 10.1016/j.icte.2019.08.001.

E. Foundation, “On Public and Private Blockchains,” 2015. https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/ (accessed Mar. 31, 2021).

S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services,” Spec. Interes. Gr. Algorithms Comput. Theory, vol. 10, no. 564585.564601, pp. 51–59, 2002.

Z. Yan, G. GuoHua, D. Di, J. Feifei, and C. Aiping, “Security Architecture and Key Technologies of Blockchain,” J. Inf. Secur. Res., vol. 2, no. 12, pp. 190–1097, 2016.

M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” Proc. Symp. Oper. Syst. Des. Implement., no. February, pp. 1–14, 1999, doi: 10.1145/571637.571640.

Y. Wang et al., “Study of Blockchains’s Consensus Mechanism Based on Credit,” IEEE Access, vol. 7, pp. 10224–10231, 2019, doi: 10.1109/ACCESS.2019.2891065.

J. Chen, X. Zhang, and P. Shangguan, “Improved PBFT Algorithm Based on Reputation.pdf,” Electrochem. Soc., vol. 24, 2021.

L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter, “Fault Detection for Byzantine Quorum System,” IEEE Trans. Pararel Distrib. Syst., vol. 12, no. 9, 2001.

K. Christodoulou, E. Iosif, A. Inglezakis, and M. Themistocleous, “Consensus crash testing: Exploring ripple’s decentralization degree in adversarial environments,” Futur. Internet, vol. 12, no. 3, 2020, doi: 10.3390/fi12030053.

R. Shrestha, R. Bajracharya, A. P. Shrestha, and S. Y. Nam, “A new type of blockchain for secure message exchange in VANET,” Digit. Commun. Networks, vol. 6, no. 2, pp. 177–186, 2020, doi: 10.1016/j.dcan.2019.04.003.

A. T. Wibowo, M. Hariadi, M. T. Sulistyono, M. Khusnu Milad, E. I. Rhofita, and A. Bimo Gumelar, “Mapping of tourism destinations by GIS-Blockchain RPCA based on PNPOLY Algorithm,” Proc. - 2020 Int. Semin. Appl. Technol. Inf. Commun. IT Challenges Sustain. Scalability, Secur. Age Digit. Disruption, iSemantic 2020, pp. 412–416, 2020, doi: 10.1109/iSemantic50169.2020.9234191.

R. S. Purves, P. Clough, C. B. Jones, M. H. Hall, and V. Murdock, “Geographic information retrieval: Progress and challenges in spatial search of text,” Found. Trends Inf. Retr., vol. 12, no. 2–3, pp. 164–318, 2018, doi: 10.1561/1500000034.

M. N. Kamel Boulos, J. T. Wilson, and K. A. Clauson, “Geospatial blockchain: Promises, challenges, and scenarios in health and healthcare,” Int. J. Health Geogr., vol. 17, no. 1, pp. 1–10, 2018, doi: 10.1186/s12942-018-0144-x.

R. R. Harmon, E. G. Castro-Leon, and S. Bhide, “Smart cities and the Internet of Things,” Portl. Int. Conf. Manag. Eng. Technol., vol. 2015-Septe, pp. 485–494, 2015, doi: 10.1109/PICMET.2015.7273174.

A. Raja, “A Comprehensive Study on Smart City using BlockChain Technology,” Int. J. Comput. Sci. Eng., vol. 6, no. 11, pp. 640–643, 2018, doi: 10.26438/ijcse/v6i11.640643.

L. Feng, H. Zhang, Y. Chen, and L. Lou, “Scalable Dynamic Multi-Agent Practical Byzantine Fault-Tolerant Consensus In Permissioned Blockchain,” Appl. Sci., vol. 8, no. 10, 2018, doi: 10.3390/app8101919.

B. Utomo, A. T. Wibowo, M. Ridwan, M. A. Izzuddin, A. B. Gumelar, and S. Arifin, “Enhanced of attendance records technology used geospatial retrieval based on crossing number,” Int. J. Interact. Mob. Technol., vol. 14, no. 16, pp. 101–116, 2020, doi: 10.3991/ijim.v14i16.13911.

Y. Ye, F. Guangrui, and Q. Shiqi, “An algorithm for judging points inside or outside a polygon,” Proc. - 2013 7th Int. Conf. Image Graph. ICIG 2013, vol. 1, pp. 690–693, 2013, doi: 10.1109/ICIG.2013.140.

A. P. U. Siahaan, R. Rahim, M. Mesran, and D. Siregar, “K-Gram As A Determinant Of Plagiarism Level in Rabin-Karp Algorithm,” Int. J. Sci. Technol. Res., vol. 06, no. 07, pp. 350–353, 2017, doi: 10.31219/osf.io/yxjnp.

W. R. Franklin, “Point Inclusion with Polygon Test,” 2006. https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html (accessed Jul. 20, 2019).

M. A. Perles, H. Martini, and Y. S. Kupitz, “A Jordan-Brouwer Separation Theorem for polyhedral pseudomanifolds,” Discret. Comput. Geom., vol. 42, no. 2, pp. 277–304, 2009, doi: 10.1007/s00454-009-9192-0.

A. P. U. Siahaan et al., “Combination of levenshtein distance and rabin-karp to improve the accuracy of document equivalence level,” Int. J. Eng. Technol., vol. 7, no. 2 Special Issue 27, pp. 17–21, 2018, doi: 10.14419/ijet.v7i2.27.12084.

P. S, R. R, and S. Balaji. B, “A Survey on Plagiarism Detection,” Int. J. Comput. Appl., vol. 86, no. 19, pp. 21–23, 2014, doi: 10.5120/15104-3428.

G. Lee, “EOS.IO Technical White Paper v2,” github.com, 2018. https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md (accessed Jun. 01, 2019).

D. Schwartz, N. Youngs, and A. Britto, “The Ripple Protocol Consensus Algorithm,” Cornell University, 2018. https://arxiv.org/pdf/1802.07242 (accessed Oct. 26, 2019).

Downloads

Published

2022-12-24

How to Cite

[1]
A. T. wibowo, M. Hariadi, S. Suhartono, and M. Shodiq, “Enhanced PBFT Blockchain based on a Combination of Ripple and PBFT (R-PBFT) to Cryptospatial Coordinate”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 8, no. 2, pp. 133–141, Dec. 2022.

Issue

Section

Article