APRS and SSTV Technology for Audiovisual Data Transmission in Internet Blank Spot Areas to Increase the Effectiveness of SAR Activities

https://doi.org/10.26594/register.v11i1.3205

Authors

  • Febrian Wahyu Christanto Universitas Semarang (Indonesia) http://orcid.org/0000-0003-4190-3831
  • Sri Handayani Universitas Semarang (Indonesia)
  • Titis Handayani Universitas Semarang (Indonesia)
  • Christine Dewi Chaoyang University of Technology (Taiwan, Province of China)

Keywords:

RAIONE, Auto Packet Reporting System, Slow-Scan Television, Search and Rescue, Emmergency Communication

Abstract

Volcanic eruptions can be detected through several warning signs. The Indonesian National Disaster Management Agency (BNPB) reported that between 2010 and 2021, Indonesia experienced 156 volcanic eruptions. The most recent occurred in 2021 when Mount Semeru erupted, forcing 10,395 people to evacuate, injuring 104, and causing 51 fatalities. The BNPB often experiences problems in carrying out mitigation, evacuation, rehabilitation, and reconstruction in disaster areas. On average, the search and evacuation process for victims takes about 3-7 days, so the probability of finding disaster victims is only about 50%. The proposed solution is a combination of radio transmission with Auto Packet Reporting System (APRS) technology as a medium for determining evacuation locations and Slow-Scan Television (SSTV) as a medium for transmitting audio and images of disaster sites, called Radio All-in-One (RAIONE). Using the Prototype method, this research has been tested for about 7 months with continuous improvements. The results show that the maximum distance covered is approximately 20 km with a minimum central antenna height of 7-10 meters, which increases the time effectiveness of SAR operations. The probability of finding survivors in a disaster increases to 75%, and SAR operations speed up to 1-2 days because of acceleration in the determination of search and evacuation locations in the Blank Spot Areas, reaching 91.30%.

Downloads

Download data is not yet available.

Author Biographies

Febrian Wahyu Christanto, Universitas Semarang

Program Studi S1 Teknik Informatika

Sri Handayani, Universitas Semarang

Department of Information Technology

Titis Handayani, Universitas Semarang

Department of Information Technology

Christine Dewi, Chaoyang University of Technology

Department of Information Management, Chaoyang University of Technology, Taiwan

Faculty of Information Technology, Satya Wacana Christian University, Indonesia

References

[1] B. Kota Tanjung Balai, “Gunung Meletus,” BPBD Kota Tanjung Balai, 2018. [Online]. Available: https://bpbd.tanjungbalaikota.go.id/jenis-bencana/gunung-meletus/. [Accessed: 14-Jan-2022].

[2] O. Sabat, “Pernah Dengar Mitigasi Bencana? Ini Pengertian & 10 Langkahnya,” detikEDU, 2021. [Online]. Available: https://www.detik.com/edu/detikpedia/d-5743168/pernah-dengar-mitigasi-bencana-ini-pengertian--10-langkahnya. [Accessed: 15-Jan-2021].

[3] C. M. Annur, “Ada 156 Letusan Gunung Api di Indonesia Sepanjanga 2010-2020,” Badan Nasional Penanggulangan Bencana (BNPB), 2021. [Online]. Available: https://databoks.katadata.co.id/datapublish/2021/12/13/ada-156-letusan-gunung-api-di-indonesia-sepanjang-2010-2020#:~:text=Ada 156 Letusan Gunung Api di Indonesia Sepanjang 2010-2020,-Jumlah Letusan Gunung&text=Di antaranya yakni Gunung Semeru,Krakatau%2C.

[4] D. H. Jayani, “3 . 616 Orang Mengungsi Akibat Erupsi Gunung Semeru,” Badan Penanggulangan Bencana Daerah (BPBD) Jawa Timur, 2021. [Online]. Available: https://databoks.katadata.co.id/datapublish/2021/12/07/3616-orang-mengungsi-akibat-erupsi-gunung-semeru#:~:text=Badan Penanggulangan Bencana Daerah (BPBD,Candipuro%2C yaitu mencapai 1.733 jiwa.

[5] A. R. Saleem et al., “A 1.5-5-GHz Integrated RF Transmitter Front End for Active Matching of an Antenna Cluster,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 11, pp. 4728–4739, 2020, doi: 10.1109/TMTT.2020.3019005.

[6] Ø. Hanssen, “Position Tracking in Voluntary Search and Rescue Operations,” in ISCRAM 2015 Conference Proceedings - 12th International Conference on Information Systems for Crisis Response and Management, 2015, pp. 76–86.

[7] L. Zhang, Y. Qian, J. Han, P. Duan, and P. Ghamisi, “Mixed Noise Removal for Hyperspectral Image With l0-l1-2SSTV Regularization,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 5371–5387, 2022, doi: 10.1109/JSTARS.2022.3185657.

[8] A. Westfeld, “Steganography for radio amateurs - A DSSS based approach for slow scan television,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4437 LNCS, pp. 201–215, 2007, doi: 10.1007/978-3-540-74124-4_14.

[9] M. Namitha and G. Manjula, “A Survey on Audio Stream Steganography Techniques,” in International Conference on Smart Data Intelligence (ICSMDI 2021), 2021, pp. 1–13.

[10] R. S. Pressman and B. R. Maxim, Software Engineering: A Practioner’s Approach, 9th ed. New York: McGraw Hill, 2020.

[11] S. Dwi Harsono, N. S. Y.H, * Z., and R. Ardinal, “Utilization of Automatic Packet Reporting System (APRS) for Weather Station Monitoring,” Spektral, vol. 3, no. 1, pp. 88–92, 2022, doi: 10.32722/spektral.v3i1.4353.

[12] BNPB, “Automatic Packet Reporting System,” Wikipedia, 2021. .

[13] G. Yeboah et al., “Analysis of OpenStreetMap Data Quality at Different Stages of a Participatory Mapping Process: Evidence from Slums in Africa and Asia,” ISPRS Int. J. Geo-Information, vol. 10, no. 4, 2021, doi: 10.3390/ijgi10040265.

[14] P. APRS, “Peta APRS FI,” 2022. [Online]. Available: https://aprs.fi/. [Accessed: 16-Jan-2022].

[15] Wikipedia, “Slow-scan television,” 2022. .

[16] F. Yang, X. Chen, and L. Chai, “Hyperspectral image destriping and denoising using stripe and spectral low-rank matrix recovery and global spatial-spectral total variation,” Remote Sens., vol. 13, no. 4, pp. 1–19, 2021, doi: 10.3390/rs13040827.

[17] H. Zeng, X. Xie, and J. Ning, “Hyperspectral image denoising via global spatial-spectral total variation regularized nonconvex local low-rank tensor approximation,” Signal Processing, vol. 178, no. 107805, pp. 1–15, 2021, doi: 10.1016/j.sigpro.2020.107805.

[18] ORARI, “Slow Scan TV (SSTV) 17 Agustus 2021,” Majalah Digital Orari, Jakarta, pp. 1–25, Jun-2021.

[19] M. Ehrenfried, “ISS SSTV success – More transmissions Saturday, December 20,” AMSAT-UK, 2014. [Online]. Available: https://amsat-uk.org/2014/12/18/iss-sstv-success/. [Accessed: 15-Jan-2022].

[20] ON6MU, “RX-SSTV,” 2021. [Online]. Available: https://www.qsl.net/on6mu/rxsstv.htm. [Accessed: 15-Jan-2022].

[21] R. A. E. Virgana and D. D. Hamdani, “Analysis of Blank Spot Data in the Communication Area with the Geoprocessing Method in Southern West Java,” Univers. J. Electr. Electron. Eng., vol. 6, no. 2, pp. 15–21, 2019, doi: 10.13189/ujeee.2019.061304.

[22] A. Reid, “Blank, Blind, Bald and Bright Spots in Environmental Education Research,” Environ. Educ. Res., vol. 25, no. 2, pp. 157–171, 2019, doi: 10.1080/13504622.2019.1615735.

[23] Lintasarta, “Panduan Lengkap Blank Spot: Definisi dan Cara Kerja,” 2021. [Online]. Available: https://blog.lintasarta.net/article/solution/data-communications-internet/vsat//apa-itu-blank-spot. [Accessed: 15-Jan-2021].

[24] G. Earth, “Screenshot GE 2021 Blankspot,” Google, 2022. [Online]. Available: https://earth.google.com/web/. [Accessed: 15-Jan-2022].

Downloads

Published

2025-02-26

How to Cite

[1]
F. W. Christanto, S. Handayani, T. Handayani, and C. Dewi, “APRS and SSTV Technology for Audiovisual Data Transmission in Internet Blank Spot Areas to Increase the Effectiveness of SAR Activities”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 11, no. 1, pp. 1–12, Feb. 2025.

Issue

Section

Article