Enhancing Bank Financial Performance Assessment: A Literature Review of Deep Learning Applications Using the Kitchenham Method

https://doi.org/10.26594/register.v11i1.4224

Authors

  • Mahrus Ali Diponegoro University (Indonesia)
  • Rahmat Gernowo Diponegoro University (Indonesia)
  • Budi Warsito Diponegoro University (Indonesia)
  • Faliha Muthmainah State University of Malang (Indonesia)

Keywords:

Deep Learning, LSTM, CNN, Hybrid Model, Kitchenham

Abstract

The assessment of bank financial performance is crucial for ensuring the stability of the banking sector. With advancements in technology, especially deep learning (DL), there is increasing potential to improve the accuracy of risk prediction and financial performance evaluation in banks. However, challenges related to data imbalance and model complexity require more efficient approaches. This study aims to examine the application of DL in assessing bank financial performance, with a focus on credit risk, fraud detection, and bankruptcy prediction. A Systematic Literature Review (SLR) was conducted using the Kitchenham approach, analyzing 697 relevant articles to address nine research questions regarding the implementation of DL in the banking sector. This study contributes by providing insights into effective DL models that enhance financial performance and risk prediction in banks, while also offering recommendations for the development of more transparent models. The results indicate that models such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) perform well in handling large financial data. Additionally, hybrid models that combine DL with traditional models demonstrate higher accuracy in bankruptcy prediction and fraud detection.

Downloads

Download data is not yet available.

Author Biographies

Mahrus Ali, Diponegoro University

Department of Doctoral Information System

Rahmat Gernowo, Diponegoro University

Department of Physics

Budi Warsito, Diponegoro University

Department of Statistics

Faliha Muthmainah, State University of Malang

Department of Psychology

References

[1] L. Li and B. M. Muwafak, "Adoption of deep learning Markov model combined with copula function in portfolio risk measurement," Appl. Math. Nonlinear Sci., pp. 901-916, 2021, doi: 10.2478/amns.2021.2.00065.
[2] M. Andronie et al., "Generative artificial intelligence algorithms in Internet of Things blockchain-based fintech management," Oeconomia Copernicana, vol. 15, no. 4. pp. 1349-1381, 2024. doi: 10.24136/oc.3283.
[3] F. Liu, "Improve the Bi-LSTM Model of University Financial Information Management Platform Construction," J. Electr. Syst., vol. 20, no. 1, pp. 124-138, 2024, doi: 10.52783/jes.671.
[4] M. Ali, R. Gernowo, B. Warsito, and F. Muthmainah, "Markov Switching Autoregressive in Information Systems for Improving Islamic Banks," Data Metadata, vol. 3, pp. 1-10, 2024, doi: 10.56294/dm2024.681.
[5] M. Ali, R. Gernowo, and B. Warsito, "Performance Analysis of Islamic Banks in Indonesia Using Machine Learning," E3S Web Conf., vol. 448, 2023, doi: 10.1051/e3sconf/202344802026.
[6] B. Kitchenham et al., "Systematic literature reviews in software engineering-A tertiary study," Inf. Softw. Technol., vol. 52, no. 8, pp. 792-805, 2010, doi: 10.1016/j.infsof.2010.03.006.
[7] E. V Orlova, "Methodology and models for individuals’ creditworthiness management using digital footprint data and machine learning methods," Mathematics, vol. 9, no. 15, 2021, doi: 10.3390/math9151820.
[8] P. K. Viswanathan, S. Srinivasan, and N. Hariharan, "Predicting Financial Health of Banks for Investor Guidance Using Machine Learning Algorithms," J. Emerg. Mark. Financ., vol. 19, no. 2, pp. 226-261, 2020, doi: 10.1177/0972652720913478.
[9] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, "Deep learning for financial applications: A survey," Appl. Soft Comput. J., vol. 93, 2020, doi: 10.1016/j.asoc.2020.106384.
[10] N. Majidi, M. Shamsi, and F. Marvasti, "Algorithmic trading using continuous action space deep reinforcement learning[Formula presented]," Expert Syst. Appl., vol. 235, 2024, doi: 10.1016/j.eswa.2023.121245.
[11] K. L. Sue, C. F. Tsai, and H. M. Tsau, "Missing value imputation and the effect of feature normalisation on financial distress prediction," J. Exp. Theor. Artif. Intell., vol. 36, no. 8, pp. 1467-1483, 2022, doi: 10.1080/0952813X.2022.2153278.
[12] T. Kristof and M. Virag, "EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks," Res. Int. Bus. Financ., vol. 61, 2022, doi: 10.1016/j.ribaf.2022.101644.
[13] L. O. Hjelkrem, P. E. de Lange, and E. Nesset, "The Value of Open Banking Data for Application Credit Scoring: Case Study of a Norwegian Bank," J. Risk Financ. Manag., vol. 15, no. 12, 2022, doi: 10.3390/jrfm15120597.
[14] A. Guarino, L. Grilli, D. Santoro, F. Messina, and R. Zaccagnino, "To learn or not to learn? Evaluating autonomous, adaptive, automated traders in cryptocurrencies financial bubbles," Neural Comput. Appl., vol. 34, no. 23, pp. 20715-20756, 2022, doi: 10.1007/s00521-022-07543-4.
[15] J. A. Bastos and S. M. Matos, "Explainable models of credit losses," Eur. J. Oper. Res., vol. 301, no. 1, pp. 386-394, 2022, doi: 10.1016/j.ejor.2021.11.009.
[16] M. Corstjens, M. Bakhshandeh, P. Kahraman, and J. Bosman, "Predicting the daily number of payment transactions in the largest bank in the Netherlands: Application to Banking Data," 2019, pp. 5507-5512. doi: 10.1109/BigData47090.2019.9005538.
[17] E. Saberi, J. Pirgazi, and A. Ghanbari sorkhi, "A machine learning approach for trading in financial markets using dynamic threshold breakout labeling," J. Supercomput., vol. 80, no. 17, pp. 25188-25221, 2024, doi: 10.1007/s11227-024-06403-3.
[18] I. Pratama, P. T. Prasetyaningrum, A. Y. Chandra, and O. Suria, "Measuring Resampling Methods on Imbalanced Educational Dataset’s Classification Performance," Regist. J. Ilm. Teknol. Sist. Inf., vol. 10, no. 1, pp. 1-11, 2024, doi: 10.26594/register.v10i1.3397.
[19] Y. R. Wang and Y. C. Tsai, "The Protection of Data Sharing for Privacy in Financial Vision," Appl. Sci., vol. 12, no. 15, 2022, doi: 10.3390/app12157408.
[20] V. G. Krishnan, M. V. V. Saradhi, T. A. M. Prakash, K. G. Kannan, and A. G. N. Julaiha, "Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection," Int. J. Recent Innov. Trends Comput. Commun., vol. 10, no. 12, pp. 133-139, 2022, doi: 10.17762/ijritcc.v10i12.5894.
[21] G. A. Chandok, V. A. M. Rexy, H. A. Basha, and H. Selvi, "Enhancing Bankruptcy Prediction with White Shark Optimizer and Deep Learning: A Hybrid Approach for Accurate Financial Risk Assessment," Int. J. Intell. Eng. Syst., vol. 17, no. 1, pp. 140-148, 2024, doi: 10.22266/ijies2024.0229.14.
[22] A. Oguntimilehin, M. L. Akukwe, K. A. Olatunji, O. B. Abiola, O. A. Adeyemo, and I. A. Abiodun, "Mobile Banking Transaction Authentication using Deep Learning," 2022. doi: 10.1109/ITED56637.2022.10051553.
[23] D. Singh and B. K. Gupta, "Closing Price Prediction of Nifty Stock Using LSTM with Dense Network," in Lecture Notes in Networks and Systems, vol. 302, pp. 382-392, 2022, doi: 10.1007/978-981-16-4807-6_37.
[24] S. P. Sharma, L. Singh, and R. Tiwari, "Integrated feature engineering based deep learning model for predicting customer’s review helpfulness," J. Intell. Fuzzy Syst., vol. 44, no. 6, pp. 8851-8868, 2023, doi: 10.3233/JIFS-223546.
[25] T. Baabdullah, A. Alzahrani, D. B. Rawat, and C. Liu, "Efficiency of Federated Learning and Blockchain in Preserving Privacy and Enhancing the Performance of Credit Card Fraud Detection (CCFD) Systems," Futur. Internet, vol. 16, no. 6, 2024, doi: 10.3390/fi16060196.
[26] R. Chakraborty, A. Samanta, K. M. Agrawal, and A. Dutta, "Towards smarter grid: Policy and its impact assessment through a case study," Sustain. Energy, Grids Networks, vol. 26, 2021, doi: 10.1016/j.segan.2021.100436.
[27] J. El Fiorenza Caroline, P. Parmar, S. Tiwari, A. Dixit, and A. Gupta, "Accuracy prediction using analysis methods and f-measures," in Journal of Physics: Conference Series, 2019, vol. 1362, no. 1. doi: 10.1088/1742-6596/1362/1/012040.
[28] A. Kesa and T. Kerikmae, "Artificial Intelligence and the GDPR: Inevitable Nemeses," TalTech J. Eur. Stud., vol. 10, no. 3, pp. 68-90, 2020, doi: 10.1515/bjes-2020-0022.
[29] D. Baishya, J. J. Deka, G. Dey, and P. K. Singh, "SAFER: Sentiment Analysis-Based FakE Review Detection in E-Commerce Using Deep Learning," SN Comput. Sci., vol. 2, no. 6, 2021, doi: 10.1007/s42979-021-00918-9.
[30] Y. Zhao, "The Data Analysis of Enterprise Operational Risk Prediction Under Machine Learning: Innovations and Improvements in Corporate Law Risk Management Strategies," J. Organ. End User Comput., vol. 36, no. 1, 2024, doi: 10.4018/JOEUC.355709.
[31] A. Maroof, S. Wasi, S. I. Jami, and M. S. Siddiqui, "Aspect-Based Sentiment Analysis for Service Industry," IEEE Access, vol. 12, pp. 109702-109713, 2024, doi: 10.1109/ACCESS.2024.3440357.
[32] Q. Li, H. Wu, W. Qian, X. Li, Q. Zhu, and S. Yang, "Portfolio Optimization Based on Quantum HHL Algorithm," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, vol. 13339 LNCS, pp. 90-99. doi: 10.1007/978-3-031-06788-4_8.
[33] D. C. Yildirim, I. H. Toroslu, and U. Fiore, "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financ. Innov., vol. 7, no. 1, 2021, doi: 10.1186/s40854-020-00220-2.
[34] X. Y. Liu et al., "Dynamic datasets and market environments for financial reinforcement learning," Mach. Learn., vol. 113, no. 5, pp. 2795-2839, 2024, doi: 10.1007/s10994-023-06511-w.
[35] S. Pol, M. Hudnurkar, and S. S. Ambekar, "Predicting Credit Ratings using Deep Learning Models - An Analysis of the Indian IT Industry," Australas. Accounting, Bus. Financ. J., vol. 16, no. 5, pp. 38-51, 2022, doi: 10.14453/aabfj.v16i5.04.
[36] E. Politou, E. Alepis, and C. Patsakis, "Profiling tax and financial behaviour with big data under the GDPR," Comput. Law Secur. Rev., vol. 35, no. 3, pp. 306-329, 2019, doi: 10.1016/j.clsr.2019.01.003.
[37] C. Y. Lee, S. K. Koh, M. C. Lee, and W. Y. Pan, "Application of Machine Learning in Credit Risk Scorecard," in Communications in Computer and Information Science, 2021, vol. 1489 CCIS, pp. 395-410. doi: 10.1007/978-981-16-7334-4_29.
[38] S. C. Tekouabou Koumetio and H. Toulni, "Improving KNN Model for Direct Marketing Prediction in Smart Cities," Studies in Computational Intelligence, vol. 971. Springer Science and Business Media Deutschland GmbH, Faculty of Sciences, Department of Computer Sciences, Chouaib Doukkaly Univercity, B.P. 20, El Jadida, 2400, Morocco, pp. 107-118, 2021. doi: 10.1007/978-3-030-72065-0_7.
[39] Y. Yang, X. Su, and S. Yao, "Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China," Resour. Policy, vol. 74, no. October, 2021, doi: 10.1016/j.resourpol.2021.102445.
[40] E. Parkar, S. Gite, S. Mishra, B. Pradhan, and A. Alamri, "Comparative study of deep learning explainability and causal ai for fraud detection," Int. J. Smart Sens. Intell. Syst., vol. 17, no. 1, 2024, doi: 10.2478/ijssis-2024-0023.
[41] Z. Hu, Y. Zhao, and M. Khushi, "A survey of forex and stock price prediction using deep learning," Appl. Syst. Innov., vol. 4, no. 1, pp. 1-30, 2021, doi: 10.3390/ASI4010009.
[42] R. A. Mulla, S. Saini, P. S. Mane, B. W. Balkhande, M. E. Pawar, and K. A. Deshmukh, "A Novel Hybrid Approach for Stock Market Index Forecasting using CNN-LSTM Fusion Model," Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 12, pp. 266-279, 2024, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185306859&partnerID=40&md5=d6cb8fa432122fa4a792e9b2b7c99186
[43] A. Akinjole, O. Shobayo, J. Popoola, O. Okoyeigbo, and B. Ogunleye, "Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction," Mathematics, vol. 12, no. 21, 2024, doi: 10.3390/math12213423.

Downloads

Published

2025-06-30

How to Cite

[1]
M. Ali, R. Gernowo, B. Warsito, and F. Muthmainah, “Enhancing Bank Financial Performance Assessment: A Literature Review of Deep Learning Applications Using the Kitchenham Method”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 11, no. 1, pp. 54–65, Jun. 2025.

Issue

Section

Article