Deteksi Kanker Kulit Melanoma dengan Linear Discriminant Analysis-Fuzzy k-Nearest Neigbhour Lp-Norm

Authors

  • Mustika Mentari Teknologi Informasi Politeknik Negeri Malang Malang
  • Yuita Arum Sari Teknik Informatika Universitas Brawijaya Malang
  • Ratih Kartika Dewi Teknik Informatika Universitas Brawijaya Malang

DOI:

https://doi.org/10.26594/register.v2i1.443

Abstract

Seiring perkembangan teknologi dilakukan otomatisasi deteksi kanker kulit melalui citra dermoscopy. Pengambilan informasi fitur citra dermoscopy terganggu dengan outlier dan overfitting, karena faktor jenis kulit, penyebaran kanker yang tidak merata atau kesalahan sampling. Penelitian ini mengusulkan deteksi kanker kulit melanoma dengan mengintegrasikan metode fuzzy K-Nearest Neighbour (FuzzykNN), Lp-norm dan Linear Discriminant Analysis (LDA) untuk mengurangi outlier dan overfitting. Masukan berupa citra warna RGB yang dinormalisasi menjadi RGBr. Reduksi dimensi dengan LDA menghasilkan fitur dengan nilai eigen paling menonjol. LDA pada penelitian ini menghasilkan dua fitur paling menonjol dari 141 jenis fitur, yaitu wilayah tumor dan minimum wilayah tumor channel R. Kemudian dilakukan klasifikasi FuzzykNN dan metode pengukur jarak Lp-norm. Penggunaan metode LDA dan Lp-norm dalam proses klasifikasi ini mengatasi terjadinya overfitting. Akurasi yang dihasilkan metode LDA-fuzzykNN Lp Norm, yaitu 72% saat masing-masing nilai p dan k = 25. Metode gabungan ini terbukti cukup baik dari pada metode yang dijalankan terpisah.

Kata kunci: melanoma, fuzzy, KNN, Lp-norm, LDA.

 

As the advancement of technology skin cancer detection need to be automated with the use of dermoscopy image. Outlier and overfitting are the problem in feature extraction of dermoscopy image, this can be caused by skin type, uneven cancer distribution or sampling error. This study proposed melanoma skin cancer detection by fuzzy K-Nearest Neighbour (FuzzykNN) with Lp-norm integrated with Linear Discriminant Analysis (LDA) to reduce the problem of outlier and overfitting. Input used in this study are images with RGB channel, then it adapted to RGBr. Dimensional reduction with LDA result in features with highest eigen value. LDA in this research select 2 discriminant, they are tumor area and minimum tumor area in R channel. This features then classified by fuzzykNN with Lp-Norm. Integration of LDA and Lp-norm in classification can reduce the problem of overfitting. This study results in 72% accuracy when the value of p and k are 25. Integration of LDA and fuzzykNN with Lp-norm has better result than unintegrated method.

Keywords: melanoma, fuzzy, KNN, Lp-norm, LDA.

References

Banu, M., & Nallaperumal, K. (2010). Analysis of Color Feature Extraction Techniques for Pathology Image Retrieval System. Computational Intelligence and Computing Research (ICCIC), 2010 IEEE International Conference on. Coimbatore.

Burroni, M., Corona, R., Dell??Eva, G., Sera, F., Bono, R., Puddu, P., . . . Rubegni, P. (2004). Melanoma Computer-Aided Diagnosis Reliability and Feasibility Study. Clinical Cancer Research, 10(6), 1881??1886.

Farag, A. A., & Elhabian, S. Y. (2008). A Tutorial on Data Linear Discriminant Analysis (LDA). Louisville, Kentucky: CVIP Lab University of Louisville.

Ganster, H., Pinz, A., Rhrer, R., Wildling, E., Binder, M., & Kittler, H. (2001). Automated Melanoma Recognition. Ieee Transactions On Medical Imaging, 20(3), 233-239.

Iyatomi, H., Celebi, M. E., Schaefer, G., & Tanaka, M. (2011). Automated Color Calibration Method for Dermoscopy Images. Computerized Medical Imaging and Graphics, 35(2), 89??98.

Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A Fuzzy K-Nearest Neighbor Algorithm. Systems, Man and Cybernetics, IEEE Transactions on, SMC-15(4), 580 - 585.

Liu, C. (2011). Extracting Discriminative Color Features for Face Recognition. Pattern Recognition Letters, 32(14), 1796??1804.

Maglogiannis, I., & Kosmopoulos, D. I. (2006). Computational Vision Systems for The Detection of Malignant Melanoma. Oncology Reports, 15(4), 1027-1032.

Oh, J. H., & Kwak, N. (2013). Generalization of Linear Discriminant Analysis Using Lp-norm. Pattern Recognition Letters, 34(6), 679??685.

Ruiz, D., Berenguer, V., Soriano, A., & Snchez, B. (2011). A Decision Support System for The Diagnosis of Melanoma: A Comparative Approach. Expert Systems with Applications, 38(12), 15217??15223.

Song, X. N., Zheng, Y. J., Wu, X. J., Yang, X. B., & Yanga, J. Y. (2010). A complete fuzzy discriminant analysis approach for face recognition. Applied Soft Computing, 10(1), 208??214.

Published

2016-01-01

How to Cite

[1]
M. Mentari, Y. A. Sari, and R. K. Dewi, “Deteksi Kanker Kulit Melanoma dengan Linear Discriminant Analysis-Fuzzy k-Nearest Neigbhour Lp-Norm”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 2, no. 1, pp. 34–39, Jan. 2016.

Issue

Section

Article