Deep Learning-Based Inpainting for Reconstructing Severely Damaged Handwritten Javanese Characters

https://doi.org/10.26594/register.v10i2.4929

Authors

  • Fitri Damayanti Institut Teknologi Sepuluh Nopember
  • Eko Mulyanto Yuniarno Institut Teknologi Sepuluh Nopember,
  • Yoyon Kusnendar Suprapto Institut Teknologi Sepuluh Nopember

Keywords:

Deep Learning, Inpainting, Reconstruction, Extensive Damage Areas, Handwritten Javanese Character

Abstract

Long-term storage at museums can damage ancient Javanese manuscripts; for instance, temperature changes and other factors may cause parts of the script to disappear. The Javanese script exhibits similarities among its letters, making the reconstruction process challenging, particularly when dealing with severe damage to the script's characteristic areas. To address this issue, we conducted a character painting technique that utilizes deep learning architecture, specifically the convolutional autoencoder, partial convolutional neural network, UNet, and ResUNet. The dataset contains 12,000 handwritten Javanese characters. We evaluated the restoration of missing characters using SSIM and PSNR metrics. The ResUNet achieves the best performance compared to other methods, with an SSIM value of 0.9319 and a PSNR value of 18.9507 dB. According to this study, the ResUNet models can reconstruct Javanese manuscripts with strong performance, offering an alternative solution to ensure the preservation and accessibility of these valuable historical documents for future generations.

Downloads

Download data is not yet available.

Author Biographies

Fitri Damayanti, Institut Teknologi Sepuluh Nopember

Department of Electrical Engineering

Eko Mulyanto Yuniarno , Institut Teknologi Sepuluh Nopember,

Department of Electrical Engineering

Yoyon Kusnendar Suprapto , Institut Teknologi Sepuluh Nopember

Department of Electrical Engineering

References

D. Iskandar, S. Hidayat, U. Jamaludin, and S. Mukti Leksono, "Javanese script digitalization and its utilization as learning media: an etnopedagogical approach," Int. J. Math. Sci. Educ., vol. 1, no. 1, pp. 21-30, 2023, doi: 10.59965/ijmsed.v1i1.24.

A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, "Improved Javanese script recognition using custom model of convolution neural network," Int. J. Electr. Comput. Eng., vol. 13, no. 6, pp. 6629-6636, 2023, doi: 10.11591/ijece.v13i6.pp6629-6636.

A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, "Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation," IAES Int. J. Artif. Intell., vol. 12, no. 3, pp. 1448-1458, 2023, doi: 10.11591/ijai.v12.i3.pp1448-1458.

A. Setiawan, A. S. Prabowo, and E. Y. Puspaningrum, "Handwriting Character Recognition Javanese Letters Based On Artificial Neural Network Text Mining and Text Information Retrieval View project Artificial intelligence View project Handwriting Character Recognition Javanese Letters Based on Artificial Neura," Netw. Secur. Inf. Syst., vol. 1, no. 1, pp. 39-42, 2019, [Online]. Available: https://www.researchgate.net/publication/343228550.

A. Susanto, I. U. Wahyu Mulyono, C. Atika Sari, E. H. Rachmawanto, and D. R. I. Moses Setiadi, "An Improved Handwritten Javanese Script Recognition using Adaptive Threshold and Multi-Feature Extraction," 2022 Int. Semin. Appl. Technol. Inf. Commun. Technol. 4.0 Smart Ecosyst. A New W. Doing Digit. Business, iSemantic 2022, no. September, pp. 66-70, 2022, doi: 10.1109/iSemantic55962.2022.9920462.

F. Damayanti, Y. K. Suprapto, and E. M. Yuniarno, "Segmentation of Javanese Character in Ancient Manuscript using Connected Component Labeling," CENIM 2020 - Proceeding Int. Conf. Comput. Eng. Network, Intell. Multimed. 2020, no. Cenim, pp. 412-417, 2020, doi: 10.1109/CENIM51130.2020.9297954.

Z. Qin, Q. Zeng, Y. Zong, and F. Xu, "Image inpainting based on deep learning: A review," Displays, vol. 69, no. March, p. 102028, 2021, doi: 10.1016/j.displa.2021.102028.

H. Liu, B. Jiang, Y. Song, W. Huang, and C. Yang, "Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12347 LNCS, pp. 725-741, 2020, doi: 10.1007/978-3-030-58536-5_43.

M. C. Sagong, Y. G. Shin, S. W. Kim, S. Park, and S. J. Ko, "PEPSI: Fast image inpainting with parallel decoding network," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 11352-11360, 2019, doi: 10.1109/CVPR.2019.01162.

S. Ozturk, "Image Inpainting based Compact Hash Code Learning using Modified U-Net," 4th Int. Symp. Multidiscip. Stud. Innov. Technol. ISMSIT 2020 - Proc., no. 120, pp. 1-5, 2020, doi: 10.1109/ISMSIT50672.2020.9255239.

M. I. Hosen and M. B. Islam, "Masked Face Inpainting Through Residual Attention UNet," Proc. - 2022 Innov. Intell. Syst. Appl. Conf. ASYU 2022, 2022, doi: 10.1109/ASYU56188.2022.9925541.

G. Song, J. Li, and Z. Wang, "Occluded offline handwritten Chinese character inpainting via generative adversarial network and self-attention mechanism," Neurocomputing, vol. 415, pp. 146-156, 2020, doi: 10.1016/j.neucom.2020.07.046.

I. S. Jo, D. Bin Choi, and Y. B. Park, "Chinese character image completion using a generative latent variable model," Appl. Sci., vol. 11, no. 2, pp. 1-19, 2021, doi: 10.3390/app11020624.

H. Li et al., "Generative character inpainting guided by structural information," Vis. Comput., vol. 37, no. 9-11, pp. 2895-2906, 2021, doi: 10.1007/s00371-021-02218-y.

Y. Weng, H. Zhou, and J. Wang, "Image Inpainting Technique Based on Smart Terminal: A Case Study in CPS Ancient Image Data," IEEE Access, vol. 7, pp. 69837-69847, 2019, doi: 10.1109/ACCESS.2019.2919326.

B. Su, X. Liu, W. Gao, Y. Yang, and S. Chen, "A restoration method using dual generate adversarial networks for Chinese ancient characters," Vis. Informatics, vol. 6, no. 1, pp. 26-34, 2022, doi: 10.1016/j.visinf.2022.02.001.

R. Liu et al., "SCCGAN: Style and Characters Inpainting Based on CGAN," Mob. Networks Appl., vol. 26, no. 1, pp. 3-12, 2021, doi: 10.1007/s11036-020-01717-x.

J. Wang, G. Pan, D. Sun, and J. Zhang, "Chinese Character Inpainting with Contextual Semantic Constraints," MM 2021 - Proc. 29th ACM Int. Conf. Multimed., pp. 1829-1837, 2021, doi: 10.1145/3474085.3475333.

C. Xing and Z. Ren, "Binary Inscription Character Inpainting Based on Improved Context Encoders," IEEE Access, vol. 11, no. June, pp. 55834-55843, 2023, doi: 10.1109/ACCESS.2023.3282442.

L. Zhao and Y. Lou, "An Auto-Encoding Network for Binary Inscription Character Inpainting based on U-Net and Self- Attention An Auto-Encoding Network for Binary Inscription Character Inpainting based on U-Net," pp. 0-21, 2023.

L. Zhao and Y. Lou, "An Auto-Encoder of Inscription Character Inpainting based on Branch Convolutional Channel Attention Module An Auto-Encoder of Inscription Character Inpainting based on Branch Convolutional Channel Attention Module," pp. 0-20, 2023.

T. Chavez, E. J. Roberts, P. H. Zwart, and A. Hexemer, "A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering," J. Appl. Crystallogr., vol. 55, no. 5, pp. 1277-1288, 2022, doi: 10.1107/S1600576722007105.

A. Kornilov, I. Safonov, and I. Yakimchuk, "Inpainting of Ring Artifacts on Microtomographic Images by 3D CNN," Conf. Open Innov. Assoc. Fruct, vol. 2020-April, pp. 200-206, 2020, doi: 10.23919/FRUCT48808.2020.9087422.

H. Patel, A. Kulkarni, S. Sahni, and U. Vyas, "Image Inpainting using Partial Convolution," pp. 1-9, 2021, [Online]. Available: http://arxiv.org/abs/2108.08791.

M. W. Sabir et al., "Segmentation of Liver Tumor in CT Scan Using ResU-Net," Appl. Sci., vol. 12, no. 17, pp. 1-15, 2022, doi: 10.3390/app12178650.

F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, "ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data," ISPRS J. Photogramm. Remote Sens., vol. 162, no. March 2019, pp. 94-114, 2020, doi: 10.1016/j.isprsjprs.2020.01.013.

E. Mique and A. Malicdem, "Deep Residual U-Net Based Lung Image Segmentation for Lung Disease Detection," IOP Conf. Ser. Mater. Sci. Eng., vol. 803, no. 1, 2020, doi: 10.1088/1757-899X/803/1/012004.

V. Pollatos, L. Kouvaras, and E. Charou, "Land cover semantic segmentation using ResUNet," CEUR Workshop Proc., vol. 2844, pp. 55-65, 2020.

O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari, "Image Inpainting: A Review," Neural Process. Lett., vol. 51, no. 2, pp. 2007-2028, 2020, doi: 10.1007/s11063-019-10163-0.

S. He and L. Schomaker, "DeepOtsu: Document enhancement and binarization using iterative deep learning," Pattern Recognit., vol. 91, pp. 379-390, 2019, doi: 10.1016/j.patcog.2019.01.025.

Downloads

Published

2024-12-31

How to Cite

[1]
F. Damayanti, E. M. Yuniarno, and Y. K. Suprapto, “Deep Learning-Based Inpainting for Reconstructing Severely Damaged Handwritten Javanese Characters”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 10, no. 2, pp. 160–174, Dec. 2024.

Issue

Section

Article