ECO-FISH: Enhanced Cloud Task Scheduling Using an Opposition-Based Artificial Fish Swarm Algorithm

https://doi.org/10.26594/register.v11i2.5340

Authors

  • Ary Mazharuddin Shiddiqi Institut Teknologi Sepuluh Nopember (Indonesia)
  • Henning Titi Ciptaningtyas Institut Teknologi Sepuluh Nopember (Indonesia)
  • Jonathan Leonardo Institut Teknologi Sepuluh Nopember (Indonesia)
  • Fayruz Rahma Universitas Islam Indonesia (Indonesia)

Keywords:

Cloud Provisioning, Task Scheduling, Artificial Intellgence, Fish Swarm Algorithm, Opposition-Based Learning

Abstract

The rapid expansion of cloud computing has increased the complexity of task scheduling and resource management across heterogeneous and dynamic environments. Conventional heuristic methods often suffer from premature convergence, resulting in imbalanced virtual machine (VM) utilization. To address these challenges, this study proposes ECO-FISH, a hybrid Opposition-Based Artificial Fish Swarm Algorithm (AFSA) designed for efficient cloud task scheduling. AFSA is selected for its swarm intelligence behaviors—prey, follow, and swarm—which enable effective local exploration with relatively low computational cost. To enhance global exploration, Opposition-Based Learning (OBL) is incorporated by evaluating opposite task–VM mappings, allowing the algorithm to escape local optima and maintain population diversity. This synergy improves the balance between exploration and exploitation while retaining algorithmic simplicity. The proposed ECO-FISH algorithm is implemented using CloudSim and benchmarked against GA, PSO, and the baseline AFSA using three workload distributions: uniform, normal, and stratified. Experimental results demonstrate that AFSA alone reduces makespan by 28–45%, increases throughput by 34–84.9%, and improves utilization by 44.12–64.59% compared to GA. The OBL enhancement in ECO-FISH provides additional gains of up to 1.6%, showing the most significant improvement under heterogeneous, stratified workloads with high variance. Overall, AFSA performs well on uniform datasets, while ECO-FISH (AFSA with OBL) exhibits superior adaptability and stability in variable cloud environments.

Downloads

Download data is not yet available.

Author Biographies

Ary Mazharuddin Shiddiqi, Institut Teknologi Sepuluh Nopember

Department of Informatics

Henning Titi Ciptaningtyas, Institut Teknologi Sepuluh Nopember

Department of Information Technology

Jonathan Leonardo, Institut Teknologi Sepuluh Nopember

Department of Informatics

Fayruz Rahma, Universitas Islam Indonesia

Department of Informatics

References

[1] K. Ma, Z. Cai, X. Yan, Y. Zhang, Z. Liu, Y. Feng, and C. Li, “PPS: Fair and efficient black-box scheduling for multi-tenant GPU clusters,” Parallel Comput., vol. 120, p. 103082, Jun. 2024, doi: https://doi.org/10.1016/j.parco.2024.103082.

[2] H. T. Ciptaningtyas, A. M. Shiddiqi, D. Purwitasari, F. D. Rosyadi, and M. N. Fauzan, “Multi-objective Task Scheduling Algorithm in Cloud Computing Using Improved Squirrel Search Algorithm,” Int. J. Intell. Eng. Syst., vol. 17, no. 1, pp. 895–912, 2024, doi: https://doi.org/10.22266/ijies2024.0229.74.

[3] I.Z. Yakubu, L. Muhammed , Z. A. Musa, Z. I. Matinja, and I. M. Adamu, “A Multi Agent Based Dynamic Resource Allocation in Fog-Cloud Computing Environment,” Trends in Sciences., vol. 18 (22):, 413, 2021, doi: https://doi.org/10.48048/tis.2021.413.

[4] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and M. U. Chowdhury, “An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments,” Neural Comput. Appl., vol. 32, no. 6, pp. 1531–1541, 2020, doi: 10.1007/s00521-019-04119-7.

[5] L. Abualigah and M. Alkhrabsheh, “Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing,” J. Supercomput., vol. 78, no. 1, pp. 740–765, 2022, doi: 10.1007/s11227-021-03915-0.

[6] Z.-J. Wang, J. Yang, Y. Liu, Z. Guo, Y. Zhang, and H. Zhao, “Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale Optimization and Its Application in Cloud Workflow Scheduling,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2715–2729, 2020, doi: https://doi.org/10.1109/TCYB. 2019.2933499.

[7] Y. Dasril, M. A. Muslim, M. F. A. Hakim, J. Jumanto, and B. Prasetiyo, “Credit Risk Assessment in P2P Lending Using LightGBM and Particle Swarm Optimization,” J. Ilm. Teknol. Sist. Inf., vol. 9, no. 1, pp. 18–28, 2023.

[8] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A scheduling scheme in the cloud computing environment using deep Q-learning,” Inf. Sci. (Ny)., vol. 512, pp. 1170–1191, 2020, doi: https://doi.org/10.1016/j.ins.2019.10.035.

[9] S. G. Domanal, R. M. R. Guddeti, and R. Buyya, “A Hybrid Bio-Inspired Algorithm for Scheduling and Resource Management in Cloud Environment,” IEEE Trans. Serv. Comput., vol. 13, no. 1, pp. 3–15, 2020, doi: 10.1109/TSC.2017.2679738.

[10] V. W. Saputra, D. Wibowo, B. A. Pratomo, R. V. Rishika, A. Bagaskara, A. M. Shiddiqi, M. Solekhah, and A. Ayatullah, “An Efficient Load Balancing Using Genetic Algorithm in Cloud Computing,” in 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 2022, pp. 298–303, doi: https://doi.org/10.1109/EECCIS54468.2022.9902925.

[11] S. Pandiyan, T. S. Lawrence, S. V., M. Ramasamy, Q. Xia, and Y. Guo, “A performance-aware dynamic scheduling algorithm for cloud-based IoT applications,” Comput. Commun., vol. 160, pp. 512–520, 2020, doi: https://doi.org/10.1016/j.comcom.2020.06.016.

[12] A. S. S. Ansyah, M. Arifin, M. B. Alfan, M. V. Suriawan, N. H. Farhansyah, A. M. Shiddiqi, and H. Studiawan, “MQTT Broker Performance Comparison between AWS, Microsoft Azure and Google Cloud Platform,” in 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), 2023, pp. 1–6, doi: https://doi.org/10.1109/ICRTEC56977.2023.10111870.

[13] N. Arora and R. K. Banyal, “Hybrid scheduling algorithms in cloud computing: a review,” Int. J. Electr. Comput. Eng. (IJECE); Vol 12, No 1 Febr. 2022, 2022, doi: 10.11591/ijece.v12i1.pp880-895.

[14] H. Hendy, M. I. Irawan, I. Mukhlash, and S. Setumin, “A Bibliometric Analysis of Metaheuristic Research and Its Applications,” J. Ilm. Teknol. Sist. Inf., vol. 9, no. 1, pp. 1–17, 2023.

[15] M. S. A. Khan and R. Santhosh, “Task scheduling in cloud computing using hybrid optimization algorithm,” Soft Comput., vol. 26, no. 23, pp. 13069–13079, 2022, doi: 10.1007/s00500-021-06488-5.

[16] H. Liu, “Research on cloud computing adaptive task scheduling based on ant colony algorithm,” Optik (Stuttg)., vol. 258, p. 168677, 2022, doi: https://doi.org/10.1016/j.ijleo.2022.168677.

[17] M. Neshat, G. Sepidnam, M. Sargolzaei, and A. N. Toosi, “Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications,” Artif. Intell. Rev., vol. 42, no. 4, pp. 965–997, 2014, doi: 10.1007/s10462-012-9342-2.

[18] A. Nekooei-Joghdani and F. Safi-Esfahani, “Dynamic scheduling of independent tasks in cloud computing applying a new hybrid metaheuristic algorithm including Gabor filter, opposition-based learning, multi-verse optimizer, and multi-tracker optimization algorithms,” J. Supercomput., vol. 78, no. 1, pp. 1182–1243, 2022, doi: 10.1007/s11227-021-03814-4.

[19] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud computing: A big picture,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 2, pp. 149–158, 2020, doi: https://doi.org/10.1016/j.jksuci.2018.01.003.

[20] P. Barredo and J. Puente, “Precise makespan optimization via hybrid genetic algorithm for scientific workflow scheduling problem,” Nat. Comput., vol. 22, no. 4, pp. 615–630, 2023, doi: 10.1007/s11047-023-09950-5.

[21] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource Management Approaches in Fog Computing: a Comprehensive Review,” J. Grid Comput., vol. 18, no. 1, pp. 1–42, 2020, doi: 10.1007/s10723-019-09491-1.

[22] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research,” Internet of Things, vol. 12, p. 100273, 2020, doi: https://doi.org/10.1016/j.iot.2020.100273.

[23] X. Ye, J. Li, S. Liu, J. Liang, and Y. Jin, “A hybrid instance-intensive workflow scheduling method in private cloud environment,” Nat. Comput., vol. 18, no. 4, pp. 735–746, 2019, doi: 10.1007/s11047-016-9600-3.

[24] X. Tang, Y. Liu, J. Zhang, Y. Chen, and H. Zhang, “Cost-Efficient Workflow Scheduling Algorithm for Applications With Deadline Constraint on Heterogeneous Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 9, pp. 2079–2092, 2022, doi: https://doi.org/10.1109/TPDS.2021.3134247.

[25] T. Li, F. Yang, D. Zhang, and L. Zhai, “Computation Scheduling of Multi-Access Edge Networks Based on the Artificial Fish Swarm Algorithm,” IEEE Access, vol. 9, pp. 74674–74683, 2021, doi: 10.1109/ACCESS.2021.3078539.

[26] P. S. Rawat, P. Dimri, P. Gupta, and G. P. Saroha, “Resource provisioning in scalable cloud using bio-inspired artificial neural network model,” Appl. Soft Comput., vol. 99, p. 106876, 2021, doi: https://doi.org/10.1016/j.asoc.2020.106876.

[27] S. Mahdavi, S. Rahnamayan, and K. Deb, “Opposition based learning: A literature review,” Swarm Evol. Comput., vol. 39, pp. 1–23, 2018, doi: https://doi.org/10.1016/j.swevo.2017.09.010.

[28] Y. Zhu and H. Gao, “Improved Binary Artificial Fish Swarm Algorithm and Fast Constraint Processing for Large Scale Unit Commitment,” IEEE Access, vol. 8, pp. 152081–152092, 2020, doi: 10.1109/ACCESS.2020.3015585.

[29] F. Pourpanah, R. Wang, C. P. Lim, X.-Z. Wang, and D. Yazdani, “A review of artificial fish swarm algorithms: recent advances and applications,” Artif. Intell. Rev., vol. 56, no. 3, pp. 1867–1903, 2023, doi: 10.1007/s10462-022-10214-4.

[30] L. Wang, L. An, J. Pi, M. Fei, and P. M. Pardalos, “A diverse human learning optimization algorithm,” J. Glob. Optim., vol. 67, no. 1, pp. 283–323, 2017, doi: 10.1007/s10898-016-0444-2.

[31] H. Krishnaveni and V. S. Janita, “Modified Artificial Fish Swarm Algorithm for Efficient Task Scheduling in Cloud Environment,” Int. J. Comput. Sci. Eng., vol. 7, no. 5, pp. 1363–1371, 2019, doi: 10.26438/ijcse/v7i5.13631371.

[32] C. Li, J. Tang, T. Ma, X. Yang, and Y. Luo, “Load balance based workflow job scheduling algorithm in distributed cloud,” J. Netw. Comput. Appl., vol. 152, p. 102518, 2020, doi: https://doi.org/10.1016/j.jnca.2019.102518.

[33] H. Krishnaveni, V. S. Janita, T. Earheart, and N. Wilkins-Diehr, “SDSC Blue Horizon,” 2000. https://www.cs.huji.ac.il/labs/parallel/workload/l sdsc blue/index.html (accessed Jul. 20, 2024).

Published

2025-12-28

How to Cite

[1]
A. M. Shiddiqi, H. T. Ciptaningtyas, J. Leonardo, and F. Rahma, “ECO-FISH: Enhanced Cloud Task Scheduling Using an Opposition-Based Artificial Fish Swarm Algorithm”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 11, no. 2, Dec. 2025.