Prediksi Kelulusan Mata Kuliah Menggunakan Hybrid Fuzzy Inference System
DOI:
https://doi.org/10.26594/register.v2i2.548Keywords:
Educational Data Mining, Fuzzy Inference System, prediction, decision tree, EDM, prediksiAbstract
Perguruan Tinggi merupakan salah satu institusi yang menyimpan data yang sangat informatif jika diolah secara baik. Prediksi kelulusan mahasiswa merupakan kasus di Perguruan Tinggi yang cukup banyak diteliti. Dengan mengetahui prediksi status kelulusan mahasiswa di tengah semester, dosen dapat mengantisipasi atau memberi perhatian khusus pada siswa yang diprediksi tidak lulus. Metode yang digunakan sangat bervariatif termasuk metode Fuzzy Inference System (FIS). Namun dalam implementasinya, proses pembangkitan rule fuzzy sering dilakukan secara random atau berdasarkan pemahaman pakar sehingga tidak merepresentasikan sebaran data. Oleh karena itu, dalam penelitian ini digunakan teknik Decision Tree (DT) untuk membangkitkan rule. Dari uraian tersebut, penelitian bertujuan untuk memprediksi kelulusan mata kuliah menggunakan hybrid FIS dan DT. Data yang digunakan dalam penelitian ini adalah data nilai Posttest, Tugas, Kuis, dan UTS dari 106 mahasiswa Politeknik Kediri pengikut mata kuliah Algoritma dan Struktur Data. Penelitian ini diawali dari membangkitkan 5 rule yang selanjutnya digunakan dalam inferensi. Tahap selanjutnya adalah implementasi FIS dengan tahapan fuzzifikasi, inferensi, dan defuzzifikasi. Hasil yang diperoleh adalah akurasi, sensitivitas, dan spesifisitas masing-masing adalah 94.33%, 96.55%, dan 84.21%.
College is an institution that holds very informative data if it mined properly. Prediction about student’s graduation is a common case that many discussed. Having the predictions of student’s graduation in the middle semester, lecturer will anticipate or give some special attention to students who would be not passed. The method used to prediction is very varied including Fuzzy Inference System (FIS). However, fuzzy rule process is often generated randomly or based on knowledge experts that not represent the data distribution. Therefore, in this study, we used a Decision Tree (DT) technique for generate the rules. So, the research aims to predict courses graduation using hybrid FIS and DT. Dataset used is the posttest score, tasks score, quizzes score, and middle test score from 106 students of the Polytechnic Kediri who took Algorithms and Data Structures. The research started by generating 5 rules by decision tree. The next is implementation of FIS that consist of fuzzification, inference, and defuzzification. The results show that the classifier give a good result in an accuracy, sensitivity, and specificity respectively was 94.33%, 96.55% and 84.21%.
References
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. Berlin: Springer.
Jang, J. S., Sun, C. T., dan Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing : A Computational Approach to Learning and Machine Intelligence. New Jersey: Prentice Hall.
Khan, I. A., dan Choi, J. T. (2014). An Application of Educational Data Mining (EDM) Technique for Scholarship Prediction. International Journal of Software Engineering and Its Applications, 8(12), 31-42.
Lindawati. (2008). Data Mining Dengan Teknik Clustering Dalam Pengklasifikasian Data Mahasiswa Studi Kasus Prediksi Lama Studi Mahasiswa Universitas Bina Nusantara. Seminar Nasional Informatika 2008 (semnasIF 2008) (hal. 174-180). Yogyakarta: UPN ”Veteran” Yogyakarta.
Mentari, M., Sari, Y. A., dan Dewi, R. K. (2016). Deteksi Kanker Kulit Melanoma dengan Linear Discriminant Analysis-Fuzzy k-Nearest Neigbhour Lp-Norm. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2(1), 34-39.
Mutrofin, S., Izzah, A., Kurniawardhani, A., dan Masrur, M. (2014). Optimasi Teknik Klasifikasi Modified K Nearest Neighbor Menggunakan Algoritma Genetika. Gamma: Jurnal Penelitian Eksakta, 10(1), 130-134.
Swanjaya, D., dan Izzah, A. (2015). Educational Data Mining Untuk Mengetahui Pola Minat Kerja Mahasiswa. Seminar Teknologi dan Rekayasa (SENTRA). 1, hal. 1-6. Malang: Universitas Muhammadiyah Malang.
Urbanowicz, R. J., dan Moore, J. H. (2009). Review Article Learning Classifier Systems: A Complete Introduction, Review, and Roadmap. Journal of Artificial Evolution and Applications, 2009, 1-25.
Virgiawan, D. M., dan Mukhlash, I. (2013). Aplikasi Association Rule Mining Untuk menemukan Pola Pada Data Nilai Mahasiswa Matematika ITS. Jurnal Sains Dan Seni POMITS, 1(1), 1-6.
Witten, I. H., Frank, E., dan Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques (Third Edition ed.). Burlington: Morgan Kaufmann.
Yadav, S. K., dan Pal, S. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification. World of Computer Science and Information Technology Journal (WCSIT), 2(2), 51-56.
Downloads
Published
How to Cite
Issue
Section
License
Please find the rights and licenses in Register: Jurnal Ilmiah Teknologi Sistem Informasi. By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
Register's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, Register permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and Register on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
Copyright and other proprietary rights relating to the article, such as patent rights,
The right to use the substance of the article in own future works, including lectures and books,
The right to reproduce the article for own purposes,
The right to self-archive the article (please read out deposit policy),
The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Register: Jurnal Ilmiah Teknologi Sistem Informasi).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. Register will not be held liable for anything that may arise due to the author(s) internal dispute. Register will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that Register entitles the author(s) to no royalties or other fees.
7. Miscellaneous
Register will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. Register's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.