Machine and Deep Learning for Intrusion Detection: A PRISMA-Guided Systematic Review of Recent Advances

https://doi.org/10.26594/register.v11i1.5589

Authors

  • Hicham Zmaimita Chouaib Doukkali University (Morocco)
  • Abdellah Madani Chouaib Doukkali University (Morocco)
  • Khalid Zine-Dine Mohammed V University (Morocco)

Keywords:

Intrusion Detection System, Machine Learning, Deep Learning, Network Security, Anomaly Detection

Abstract

The massive increase in the number and complexity of cyberattacks has surpassed the capabilities of traditional Intrusion Detection Systems (IDS), prompting a shift toward Machine Learning (ML) and Deep Learning (DL) solutions. This systematic literature review critically examines research published between 2020 and 2025 on ML- and DL-based IDSs, focusing on model architectures, benchmark datasets, evaluation metrics, and key performance results. By adapting a rigorous methodology based on PRISMA 2020, 41 high-quality studies were selected and analyzed. The findings reveal a strong preference for DL models, particularly Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional Long Short-Term Memory (BiLSTM) and hybrid ensembles, which demonstrate higher detection rates and robustness compared to traditional deep learning methods. However, persistent challenges such as data imbalance, high false positive rates, adversarial vulnerabilities and real-time deployment constraints, continue to hinder widespread adoption.

Downloads

Download data is not yet available.

References

[1] H. Hindy et al., ‘A Taxonomy of Network Threats and the Effect of Current Datasets on Intrusion Detection Systems’, IEEE Access, vol. 8, pp. 104650–104675, 2020, doi: 10.1109/ACCESS.2020.3000179.

[2] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, ‘Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm’, IEEE Trans. Comput., vol. 65, no. 10, pp. 2986–2998, Oct. 2016, doi: 10.1109/TC.2016.2519914.

[3] T. Sowmya and E. A. Mary Anita, ‘A comprehensive review of AI based intrusion detection system’, Measurement: Sensors, vol. 28, p. 100827, Aug. 2023, doi: 10.1016/j.measen.2023.100827.

[4] Y. Ma, B. Niu, and Y. Qi, ‘Survey of image classification algorithms based on deep learning’, in 2nd International Conference on Computer Vision, Image, and Deep Learning, F. Cen and B. H. Bin Ahmad, Eds., Liuzhou, China: SPIE, Oct. 2021, p. 9. doi: 10.1117/12.2604526.

[5] A. Kumar, A. Kumar, M. K. Singh, and P. Kumari, ‘Cyber Attack Detection using Deep Learning’, Middle East Res J Engr Technol, vol. 3, no. 04, pp. 44–50, Jul. 2023, doi: 10.36348/merjet.2023.v03i04.001.

[6] L. Diana, P. Dini, and D. Paolini, ‘Overview on Intrusion Detection Systems for Computers Networking Security’, Computers, vol. 14, no. 3, p. 87, Mar. 2025, doi: 10.3390/computers14030087.

[7] J. Burgert and G. C. Richards, ‘Funding matters: time to update preferred reporting items for systematic reviews and meta-analyses?’, Journal of Clinical Epidemiology, vol. 180, p. 111678, Apr. 2025, doi: 10.1016/j.jclinepi.2025.111678.

[8] R. Dhahbi and F. Jemili, ‘A Deep Learning Approach for Intrusion Detection’, in 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, Hainan, China: IEEE, Dec. 2021, pp. 1211–1218. doi: 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00186.

[9] N. Singh, S. Jaiswar, P. Jha, K. Virendra, V. Tiwari, and K. Saket, ‘Adaptive Intrusion Detection Using Deep Reinforcement Learning: A Novel Approach’, pp. 2455–6211, May 2024.

[10] J. Simon, N. Kapileswar, P. K. Polasi, and M. A. Elaveini, ‘Hybrid intrusion detection system for wireless IoT networks using deep learning algorithm’, Computers and Electrical Engineering, vol. 102, p. 108190, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108190.

[11] V. Ravi, R. Chaganti, and M. Alazab, ‘Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system’, Computers and Electrical Engineering, vol. 102, p. 108156, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108156.

[12] L. Zhang, K. Liu, X. Xie, W. Bai, B. Wu, and P. Dong, ‘A data-driven network intrusion detection system using feature selection and deep learning’, Journal of Information Security and Applications, vol. 78, p. 103606, Nov. 2023, doi: 10.1016/j.jisa.2023.103606.

[13] S. Hassen and A. Abdlrazaq, ‘Contextual Deep Semantic Feature Driven Multi-Types Network Intrusion Detection System for IoT-Edge Networks’, ZJPAS, vol. 36, no. 6, pp. 132–147, Dec. 2024, doi: 10.21271/ZJPAS.36.6.14.

[14] M. Abd Elaziz, M. A. A. Al-qaness, A. Dahou, R. A. Ibrahim, and A. A. A. El-Latif, ‘Intrusion detection approach for cloud and IoT environments using deep learning and Capuchin Search Algorithm’, Advances in Engineering Software, vol. 176, p. 103402, Feb. 2023, doi: 10.1016/j.advengsoft.2022.103402.

[15] Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, ‘Attack classification of an intrusion detection system using deep learning and hyperparameter optimization’, Journal of Information Security and Applications, vol. 58, p. 102804, May 2021, doi: 10.1016/j.jisa.2021.102804.

[16] M. Vishwakarma and N. Kesswani, ‘DIDS: A Deep Neural Network based real-time Intrusion detection system for IoT’, Decision Analytics Journal, vol. 5, p. 100142, Dec. 2022, doi: 10.1016/j.dajour.2022.100142.

[17] R. Devendiran and A. V. Turukmane, ‘Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy’, Expert Systems with Applications, vol. 245, p. 123027, Jul. 2024, doi: 10.1016/j.eswa.2023.123027.

[18] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, ‘A bidirectional LSTM deep learning approach for intrusion detection’, Expert Systems with Applications, vol. 185, p. 115524, Dec. 2021, doi: 10.1016/j.eswa.2021.115524.

[19] Y. Xue, C. Kang, and H. Yu, ‘HAE-HRL: A network intrusion detection system utilizing a novel autoencoder and a hybrid enhanced LSTM-CNN-based residual network’, Computers & Security, vol. 151, p. 104328, Apr. 2025, doi: 10.1016/j.cose.2025.104328.

[20] J. Fang and F. Leng, ‘Network Security Intrusion Detection System Based on Deep Learning’, Procedia Computer Science, vol. 261, pp. 1107–1113, Jan. 2025, doi: 10.1016/j.procs.2025.04.692.

[21] B. Xu, L. Sun, X. Mao, C. Liu, and Z. Ding, ‘Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling’, CMC, vol. 78, no. 2, pp. 1995–2022, 2024, doi: 10.32604/cmc.2023.046478.

[22] M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano, ‘A Case Study with CICIDS2017 on the Robustness of Machine Learning against Adversarial Attacks in Intrusion Detection’, in Proceedings of the 18th International Conference on Availability, Reliability and Security, Benevento Italy: ACM, Aug. 2023, pp. 1–8. doi: 10.1145/3600160.3605031.

[23] S. Asif, ‘OSEN-IoT: An optimized stack ensemble network with genetic algorithm for robust intrusion detection in heterogeneous IoT networks’, Expert Systems with Applications, vol. 276, p. 127183, Jun. 2025, doi: 10.1016/j.eswa.2025.127183.

[24] F. Alrayes, M. Zakariah, S. Amin, Z. Khan, and J. Alqurni, ‘Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System’, CMC, vol. 80, no. 1, pp. 1457–1490, 2024, doi: 10.32604/cmc.2024.051996.

[25] R. A. Abed, E. K. Hamza, and A. J. Humaidi, ‘A modified CNN-IDS model for enhancing the efficacy of intrusion detection system’, Measurement: Sensors, vol. 35, p. 101299, Oct. 2024, doi: 10.1016/j.measen.2024.101299.

[26] D. Suja Mary, L. Jaya Singh Dhas, A. R. Deepa, M. A. Chaurasia, and C. Jaspin Jeba Sheela, ‘Network intrusion detection: An optimized deep learning approach using big data analytics’, Expert Systems with Applications, vol. 251, p. 123919, Oct. 2024, doi: 10.1016/j.eswa.2024.123919.

[27] S. Shen, C. Cai, Z. Li, Y. Shen, G. Wu, and S. Yu, ‘Deep Q-network-based heuristic intrusion detection against edge-based SIoT zero-day attacks’, Applied Soft Computing, vol. 150, p. 111080, Jan. 2024, doi: 10.1016/j.asoc.2023.111080.

[28] B. Sharma, L. Sharma, C. Lal, and S. Roy, ‘Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning based approach’, Expert Systems with Applications, vol. 238, p. 121751, Mar. 2024, doi: 10.1016/j.eswa.2023.121751.

[29] N. O. Aljehane et al., ‘Golden jackal optimization algorithm with deep learning assisted intrusion detection system for network security’, Alexandria Engineering Journal, vol. 86, pp. 415–424, Jan. 2024, doi: 10.1016/j.aej.2023.11.078.

[30] A. Ba and M. Adda, ‘Intrusion Detection in IIoT Using Machine Learning’, Procedia Computer Science, vol. 251, pp. 265–272, 2024, doi: 10.1016/j.procs.2024.11.109.

[31] R. Kimanzi, P. Kimanga, D. Cherori, and P. K. Gikunda, ‘Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review’, Feb. 26, 2024, arXiv: arXiv:2402.17020. doi: 10.48550/arXiv.2402.17020.

[32] R. Chinnasamy, M. Subramanian, S. V. Easwaramoorthy, and J. Cho, ‘Deep learning-driven methods for network-based intrusion detection systems: A systematic review’, ICT Express, vol. 11, no. 1, pp. 181–215, Feb. 2025, doi: 10.1016/j.icte.2025.01.005.

Downloads

Published

2025-06-30

How to Cite

[1]
H. Zmaimita, A. Madani, and K. Zine-Dine, “Machine and Deep Learning for Intrusion Detection: A PRISMA-Guided Systematic Review of Recent Advances”, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 11, no. 1, pp. 66–74, Jun. 2025.

Issue

Section

Article