Segmentasi pembuluh darah pada citra retina dengan menggunakan Multi-Scale Line Detector (MSLD) dan Adaptive Morphology
DOI:
https://doi.org/10.26594/register.v3i1.716Keywords:
adaptive morphology, blood vessels, Multi-Scale Line Detector, Optic disc, Segmentation, pembuluh darah, Segmentasi, segmentation, image processingAbstract
Pembuluh darah pada retina merupakan bagian retina yang berfungsi memberikan suplai darah dan oksigen ke dalam retina. Sehingga apabila pembuluh darah tidak tersuplai oksigen, maka dapat ditarik kesimpulan bahwa pembuluh darah retina tersebut bermasalah, banyaknya noise pada daerah pembuluh darah menyebabkan proses dalam segmentasi. Karena permasalahan yang timbul, maka dalam penelitian ini diusulkan metode segmentasi pembuluh darah dengan menggabungkan dua metode, yaitu metode Multi-Scale Line Detector (MSLD) dan Adaptive Morphology. Dari keseluruhan metode memiliki fungsi yang berbeda-beda, MSLD berfungsi dalam proses pemisahan garis yang dibentuk oleh pembuluh darah yang dalam hal ini melalui proses perubahan citra orisinal ke citra green channel, namun dalam proses sebenarnya metode MSLD kurang dalam proses segmentasi, karena timbulnya masalah disaat terjadi garis yang menyilang antara optic disc dan pembuluh darah, sehingga pada saat segmentasi garis yang menyilang tersebut tidak akan ikut disegmentasi, sehingga membutuhkan metode penambahan pada proses segmentasinya, untuk itu diperlukan metode Adaptive Morphology, sehingga saat proses segmentasi sebelumnya yang telah dilakukan dengan menggunakan MSLD bisa disempurnakan dengan menggunakan metode Adaptive Morphology. Penggabungan metode sangat efektif karena bisa menghilangkan area optic disc yang membentuk garis menyilang dengan pembuluh darah secara sempurna dengan tanpa menghilangkan area pembuluh darah, sehingga dalam proses segmentasi dapat menghasilkan tingkat akurasi 97,94%.
The blood vessels of the retina are part of the retina that serves to supply blood and oxygen to the retina. So if the blood vessels are not supplied oxygen, it can be concluded that the retinal blood vessels are problematic, the amount of noise in the blood vessel causes the process in segments.Karena problems arise, then in this study proposed method of blood vessel segmentation by combining two methods, namely Methods of Multi-Scale Line Detector (MSLD) and adaptive morphology. From the whole method has different functions, MSLD function in the process of separation of lines formed by blood vessels in this case through the process of changing the original image to the green channel image, but in the actual process of MSLD method is less In the process of segmentation, due to the emergence of the problem when there is a crossing line between the optic disc and blood vessels, so that when the segmentation of the crossed line will not participate in segmentation, thus requiring additional method in the process of segmentation, for that required adaptive morphology method, Previous segmentation that has been done by using MSLD can be enhanced by using adaptive morphology method. Combination method is very effective because it can eliminate the optic disc area that forms a line crossed with blood vessels perfectly without removing the blood vessel area, so in the process of segmentation can produce an accuracy of 97.94%.
References
Fraz, M. M., Remagnino, P., Hoppe, A., Velastin, S., Uyyanonvara, B., & Barman, S. A. (2011). A supervised method for retinal blood vessel segmentation using line strength, multiscale Gabor and morphological features. Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on (pp. 410-415). Kuala Lumpur: IEEE.
Nguyen, U. T., Bhuiyan, A., Park, L. A., & Ramamohanarao, K. (2013). An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition, 46(3), 703-715.
Sutaji, D., Fatichah, C., & Navastara, D. A. (2016). Segmentasi Pembuluh Darah Retina Pada Citra Fundus Menggunakan Gradient Based Adaptive Thresholding Dan Region Growing. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2(2), 105-116.
Thirumavalavan, S., & Jayaraman, S. (2016). An improved teaching–learning based robust edge detection algorithm for noisy images. Journal of Advanced Research, 7(6), 979–989.
Welfer, D., Scharcanski, J., Kitamura, C. M., Pizzol, M. M., Ludwig, L. W., & Marinho, D. R. (2010). Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Computers in Biology and Medicine, 40(2), 124-137.
Whardana, A. K., & Suciati, N. (2014). A Simple Method for Optic Disk Segmentation from Retinal Fundus Image. International Journal of Image, Graphics and Signal Processing, 6(11), 36-42.
Downloads
Published
How to Cite
Issue
Section
License
Please find the rights and licenses in Register: Jurnal Ilmiah Teknologi Sistem Informasi. By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
Register's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, Register permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and Register on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
Copyright and other proprietary rights relating to the article, such as patent rights,
The right to use the substance of the article in own future works, including lectures and books,
The right to reproduce the article for own purposes,
The right to self-archive the article (please read out deposit policy),
The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Register: Jurnal Ilmiah Teknologi Sistem Informasi).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. Register will not be held liable for anything that may arise due to the author(s) internal dispute. Register will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that Register entitles the author(s) to no royalties or other fees.
7. Miscellaneous
Register will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. Register's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.