Metode Bulirsch-Stoer pada Model Predator-Prey Penangkapan Ikan dengan Perilaku Schooling
DOI:
https://doi.org/10.26594/jmpm.v5i2.2047Keywords:
Metode Bulirsch-Stoer, Model Predator-Prey, Metode Runge-KuttaAbstract
Dalam bidang matematika, banyak model yang dikembangkan untuk memprediksi perubahan dalam bidang perikanan. Salah satu model yang sering digunakan untuk menganalisis interaksi ikan beserta biota laut lainnya adalah model predator-prey. Penelitian sebelumnya telah menganalisis dan membuat simulasi model predator-prey dengan Metode Runge-Kutta. Artikel ini membandingkan Metode Runge-Kutta dan metode Bulirsch–Stoer. Hasil yang diperoleh memberikan kesimpulan bahwa metode Bulirsch-Stoer yang digunakan masih perlu dikembangkan karena hasil yang diberikan metode ini tidak konvergen.
References
Agarwal, M., & Pathak, R. (2017). Harvesting and Hopf Bifurcation in a Prey-Predator Model with Holling Type IV Functional Response. International Journal of Mathematics and Soft Computing, 2(1), 99. https://doi.org/10.26708/ijmsc.2012.1.2.12
Ang, T. K., & Safuan, H. M. (2019). Chaos , Solitons and Fractals Harvesting in a toxicated intraguild predator – prey fishery model with variable carrying capacity. Chaos, Solitons and Fractals: The Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 126, 158–168. https://doi.org/10.1016/j.chaos.2019.06.004
Baca¨er, N. (2011). A Short History of Mathematical Population Dynamics (pp. 35–39). Springer-Verlag London Limited. https://doi.org/10.1007/978-0-85729-115-8
C. Woodford, & Phillips, C. (2012). Numerical Methods with Worked Examples: Matlab Edition Second Edition (2nd ed.). Springer Science+Business Media.
John H. Mathews, K. D. F. (1999). Numerical Methods Using Matlab Third Edition. Upper Saddle River, NJ: Prentice Hall.
Kiusalaas, J. (2010). NUMERICAL METHODS IN ENGINEERING WITH MATLAB Second Edition. New York: Cambridge University Press.
Manna, D., Maiti, A., & Samanta, G. P. (2018). Analysis of a predator-prey model for exploited fish populations with schooling behavior. Applied Mathematics and Computation, 317, 35–48. https://doi.org/10.1016/j.amc.2017.08.052
Mishra, P., Raw, S. N., & Tiwari, B. (2019). Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators. Chaos, Solitons and Fractals, 120, 1–16. https://doi.org/10.1016/j.chaos.2019.01.012
Munaf, D. R., & Windari, R. (2015). PENGEMBANGAN SUMBER DAYA KELAUTAN DALAM INDUSTRI MARITIM DUNIA. Jurnal Sosioteknologi, 14(2), 154.
Skalski, G. T., & Gilliam, J. F. (2001). Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology, 82(11), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
Downloads
Published
Issue
Section
License
All information and contents of articles contained in JMPM: Jurnal Matematika dan Pendidikan Matematika are free to read, download, print, copy, or share with various legal purposes.
The formal legal aspect of access to any information and articles contained in this journal website refers to the Creative Commons Attribution 4.0 International (CC BY 4.0) license terms.