Karakteristik Rantai Markov pada Data Curah Hujan Bulanan Stasiun Djalaluddin
DOI:
https://doi.org/10.26594/jmpm.v7i2.2654Keywords:
Curah Hujan, Rantai Markov, Klasifikasi StateAbstract
Penelitian ini bertujuan untuk menganalisis karakteristik model rantai Markov pada data curah hujan bulanan. Data curah hujan bulanan dibagi dalam tiga state yaitu kering, lembab, dan basah. Sebagian besar data terkategorikan pada state 3 yaitu kondisi basah sebesar 54,41%. Berdasarkan hasil evaluasi data curah hujan di Stasiun Djalaluddin, memiliki curah hujan yang cukup tinggi dengan presentase diatas 50%. Peluang transisi tertinggi adalah sebesar 61,9% dimana peluang transisi dari kondisi basah kembali ke kondisi basah lebih besar daripada peluang menuju kondisi kering atau lembab. Karakteristik rantai Markov data curah hujan bulanan menunjukkan kondisi yang tidak stabil dan kecilnya peluang transisi untuk berpindah ke kondisi lainnya.
References
Aprianto, R., & Puspitasari, P. A. D. (2020). Prediksi curah hujan bulanan tahun 2020 kabupaten Sumbawa menggunakan Artificial Neural Network (ANN) Back Propagation. Prosiding Seminar Nasional IPPeMas, 1(1), 622–628.
Back, Á. J., & Miguel, L. P. (2017). Analysis of the stochastic model of the Markov chain on daily rainfall occurrence in the state of Santa Catarina, Brazil. Management of Environmental Quality: An International Journal, 28(1), 2–16. https://doi.org/10.1108/MEQ-07-2015-0135
Banik, P., Mandal, A., & Rahman, M. S. (2002). Markov chain analysis of weekly rainfall data in determining drought-proneness. Discrete Dynamics in Nature and Society, 7(4), 231–239. https://doi.org/10.1155/S1026022602000262
Jale, J. da S., Xavier Júnior, S. F. A., Xavier, É. F. M., Stoši?, T., Stoši?, B., & Ferreira, T. A. E. (2019). Application of Markov chain on daily rainfall data in Paraíba-Brazil from 1995-2015. Acta Scientiarum - Technology, 41(1). https://doi.org/10.4025/actascitechnol.v41i1.37186
Koem, S., Lahay, R. J., & Nasib, S. K. (2022). The sensitivity of meteorological drought index towards El Nino-Southern Oscillation. IOP Conference Series: Earth and Environmental Science, 1089(1), 012005. https://doi.org/10.1088/1755-1315/1089/1/012005
Koem, S., & Rusiyah. (2017). Monitoring of drought events in Gorontalo Regency. IOP Conference Series: Earth and Environmental Science, 98, 012053. https://doi.org/10.1088/1755-1315/98/1/012053
Koem, S., & Rusiyah, R. (2018). Karakteristik spasiotemporal kekeringan meteorologi di kabupaten Gorontalo tahun 1981-2016. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 8(3), 355–364. https://doi.org/10.29244/jpsl.8.3.355-364
Nop, C., Fadhil, R. M., & Unami, K. (2021). A multi-state Markov Chain Model for rainfall to be used in optimal operation of rainwater harvesting systems. Journal of Cleaner Production, 285, 124912. https://doi.org/10.1016/j.jclepro.2020.124912
Sanso, B., & Guenni, L. (1999). A stochastic model for tropical rainfall at a single location. Journal of Hydrology, 214, 64–73.
Tettey, M., Oduro, F. T., Adedia, D., & Abaye, D. A. (2017). Markov chain analysis of the rainfall patterns of five geographical locations in the south eastern coast of Ghana. Earth Perspectives, 4(1). https://doi.org/10.1186/s40322-017-0042-6
Yoo, C., Lee, J., & Ro, Y. (2016). Markov chain decomposition of monthly rainfall into daily rainfall: evaluation of climate change impact. Advances in Meteorology, 2016. https://doi.org/10.1155/2016/7957490
Downloads
Published
Issue
Section
License
Copyright (c) 2022 JMPM: Jurnal Matematika dan Pendidikan Matematika
This work is licensed under a Creative Commons Attribution 4.0 International License.
The formal legal aspect of access to any information and articles contained in this journal website refers to the Creative Commons Attribution 4.0 International (CC BY 4.0) license terms.