A Note on Nilpotent Graph of Ring Integer Modulo with Order Prime Power
DOI:
https://doi.org/10.26594/jmpm.v8i1.2920Keywords:
Integer Modulo, Ring, Graph, NilpotentAbstract
Nilpotent graph of ring integer modulo is one of the graph representations in algebraic structures. This study aims to find out the shape and properties of a nilpotent graph of ring prime numbers modulo which is then generalized to a ring of integers modulo with arbitrary prime power. The method used in this research is a literature study. In the ring of integer modulo, we get the shape of a nilpotent graph as a star graph. Then, the characteristic of a nilpotent graph on a ring integer modulo with arbitrary prime power is that it contains a complete subgraph and contains a number of as a star subgraph.
References
Akbari, S., Heydari, F., & Maghasedi, M. (2015). The intersection graph of a group. Journal of Algebra and Its Applications, 14(5). https://doi.org/10.1142/S0219498815500656
Asmarani, E. Y., Syarifudin, A. G., Wardhana, I. G. A. W., & Switrayni, N. W. (2021). The power graph of a dihedral group. Eigen Mathematics Journal, 4(2), 80–85. https://doi.org/10.29303/emj.v4i2.117
Gayatri, M. R., Aini, Q., Awanis, Z. Y., Salwa, S., & Wardhana, I. G. A. W. (2023). The clique number and the chromatics number of the coprime graph for the generalized quarternion group. JTAM (Jurnal Teori Dan Aplikasi Matematika) , 7(2), 409–416. https://doi.org/10.31764/jtam.v7i2.13099
Ma, X., Wei, H., & Yang, L. (2014). The coprime graph of a group. International Journal of Group Theory, 3(3), 13–23. https://doi.org/10.22108/ijgt.2014.4363
Mansoori, F., Erfanian, A., & Tolue, B. (2016). Non-coprime graph of a finite group. AIP Conference Proceedings, 1750(June 2016). https://doi.org/10.1063/1.4954605
Misuki, W. U., Wardhana, I. G. A. W., Switrayni, N. W., & Irwansyah. (2021). Some results of non-coprime graph of the dihedral group D2n for n a prime power. AIP Conference Proceedings, 2329(February). https://doi.org/10.1063/5.0042587
Nikmehr, M. J., & Khojasteh, S. (2013). On the nilpotent graph of a ring. Turkish Journal of Mathematics, 37(4), 553–559. https://doi.org/10.3906/mat-1112-35
Nurhabibah, Malik, D. P., Syafitri, H., & Wardhana, I. G. A. W. (2022). Some results of the non-coprime graph of a generalized quaternion group for some n. AIP Conference Proceedings, 2641(December 2022), 020001. https://doi.org/10.1063/5.0114975
Nurhabibah, N., Syarifudin, A. G., & Wardhana, I. G. A. W. (2021). Some results of the coprime graph of a generalized quaternion group Q_4n. In Prime: Indonesian Journal of Pure and Applied Mathematics, 3(1), 29–33. https://doi.org/10.15408/inprime.v3i1.19670
Nurhabibah, N., Syarifudin, A. G., Wardhana, I. G. A. W., & Aini, Q. (2021). The intersection graph of a dihedral group. Eigen Mathematics Journal, 4(2), 68–73. https://doi.org/10.29303/emj.v4i2.119
Nurhabibah, N., Wardhana, I. G. A. W., & Switrayni, N. W. (2023). Numerical invariants of coprime graph of a generalized quaternion group. J. Indones. Math. Soc, 29(01), 36–44.
Ramdani, D. S., Wardhana, I. G. A. W., & Awanis, Z. Y. (2022). The intersection graph representation of a dihedral group with prime order and its numerical invariants. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 16(3), 1013–1020. https://doi.org/10.30598/barekengvol16iss3pp1013-1020
Silverman, J. H. (2022). Abstract algebra: an integrated approach.
Syarifudin, A. G., Nurhabibah, Malik, D. P., & dan Wardhana, I. G. A. W. (2021). Some characterizatsion of coprime graph of dihedral group D2n. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012051
Syarifudin, A. G., Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2021). The clique numbers and chromatic numbers of the coprime graph of a dihedral group. IOP Conference Series: Materials Science and Engineering, 1115(1), 012083. https://doi.org/10.1088/1757-899x/1115/1/012083
Syechah, B. N., Asmarani, E. Y., Syarifudin, A. G., Anggraeni, D. P., & Wardhana, I. G. A. W. W. (2022). Representasi graf pangkat pada grup bilangan bulat modulo berorde bilangan prima. Evolusi: Journal of Mathematics and Sciences, 6(2), 99–104.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 JMPM: Jurnal Matematika dan Pendidikan Matematika
This work is licensed under a Creative Commons Attribution 4.0 International License.
The formal legal aspect of access to any information and articles contained in this journal website refers to the Creative Commons Attribution 4.0 International (CC BY 4.0) license terms.