STRUKTUR ARGUMENTASI PENALARAN KOVARIASIONAL SISWA KELAS VIIIB MTsN 1 KEDIRI
DOI:
https://doi.org/10.26594/jmpm.v1i1.498Keywords:
Model Argumen Toulmin, Penalaran KovariasionalAbstract
Argumen matematis siswa tingkat dasar hingga sekolah menengah sering sulit dikaitkan dengan pembuktian matematis formal. Model Argumen Toulmin menawarkan suatu pendekatan untuk menganalisis argumen yang sangat berbeda dengan pendekatan logika formal. Studi ini bertujuan untuk mendeskripsikan struktur argumentasi siswa kelas VIIIB MTsN 1 Kediri ketika menyelesaikan masalah kovariasi berdasarkan teori argumentasi Toulmin. Hasil penelitian ini mengungkapkan bahwa subjek belum memiliki struktur argumen yang lengkap. Secara umum subjek membangun argumen secara induktif. Peran “backing” menjadi esensial ketika argumen subjek didukung oleh contoh-contoh kasus yang mengantarkan pada suatu kesimpulan, sementara “qualifier” dan “rebuttal” tidak muncul pada struktur argumen mereka.
References
Aberdein, A. (2005). The Uses of Argument in Mathematics. Argumentation, 19, 287–301.
Aberdein, A. (2006a). Managing Informal Mathematical Knowledge: Techniques from Informal Logic. Makalah disajikan dalam The 5th International Conference on Mathematical Knowledge Management, St. Annes Manor,
Wokingham, UK, Agustus 2006.
Aberdein, A. (2006b). The Informal Logic of Mathematical Proof. Dalam R.Hersh (Ed.), 18 Unconventional Essays on the Nature of Mathematics, (pp.56–70). Berlin Heidelberg New York: Springer.
Bishop, S., & John, A. (2008). Teaching High School Student Parametric Functions Through Covariation. USA: Arizona State University (Research Paper for Masters Degree).
BSNP. (2006). Panduan Penyusunan Kurikulum Tingkat Satuan Pendidikan Jenjang Pendidikan Dasar dan Menengah. Jakarta: Badan Standar Nasional Pendidikan.
Brinkerhoff, J. A. (2007). Applying Toulmin's Argumentation Framework to Explanations in a Reform Oriented Mathematics Class. All Theses and Dissertations. Paper 1408.
Brodie, K. (2010). Teaching Mathematical Reasoning in Secondary School Classrooms. New York: Springer. Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying Covariational Reasoning While Modeling Dynamic Events: A Framework and a Study. Journal for Research in Mathematics Education. 33(5), 352 – 378.
Carlson, M. P., & Thompson, P. W. (2005). The Reflective Relationship Between Individual Cognition and Classroom Practice: a Covariation Framework and Problem Solving Research Inform Calculus Instruction. Makalah disajikan dalam Annual Meeting of the American Educational Research Association, Montreal, Quebee.
Cooper, J. L., Walkington, C.A., Williams, C. C., Akinsiku, O. A., Kalish, C. W., Ellis, A. B., & Knuth, E. J. (2011). Adolescent Reasoning in Mathematics: Exploring Middle School Students’ Strategic Approaches in Empirical Justifications. Makalah disajikan dalam Proceedings of the 33rd Annual Conference of the Cognitive Science Society, Boston, MA.
Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling Mathematical Argumentation: The Importance of Qualification. Educational Studies in Mathematics, 66, 3–21.
Johnson, H. L. (2012). Reasoning About Variation in The Intensity of Change in Covarying Quantities Involved in Rate of Change. The Journal of Mathematical Behavior, 31(3), 313–330.
Kemendikbud. (2013). Peraturan Menteri Pendidikan dan Kebudayaan No 65 Tahun 2013 tentang Standar Proses. Jakarta: Kementerian Pendidikan dan Kebudayaan.
Knuth, E., Kalish, C., Ellis, A., Williams, C., & Felton, M. (2011). Adolescent Reasoning in Mathematical and Non-mathematical Domains: Exploring the Paradox. Dalam V. Reyna, S. Chapman, M. Dougherty, & J. Confrey (Eds.), The Adolescent Brain: Learning, Reasoning, and Decision Making (183-210). Washington, DC: American Psychological Association.
Koklu, O. (2007). An Investigation of College Students’ Covariational Reasonings. USA: Florida State University (Ph.D. Dissertation).
NCTM. (2002). Principles and Standards for School Mathematics. Reston, Va.: NCTM.
NCTM. (2009). Focus in High School Mathematics: Reasoning and Sense Making. USA: NCTM.
Rice, L. (2015). Prospective Secondary Mathematics Teachers‟ Thinking in Arguing: Applying Toulmin‟s Scheme to Four Cases. The Researcher, 27(2), 20-24.
Saldanha, L., & Thompson, P. W. (1998). Re-thinking Co-variation from a Quantitative Perspective: Simultaneous Continuous Variation. Dalam S. B. Berensah & W. N. Coulombe (Eds.), Proceedings of the Annual Meeting of
the Psychology of Mathematics Education - North America. Raleigh, NC: North Carolina State University.
Subanji. (2011). Teori Berpikir Pseudo Penalaran Kovariasi. Malang: UM Press.
Tall, D. (2008). The Transition to Formal Thinking in Mathematics. Mathematics Education Research Journal, 20 (2), 5-24.
Thompson, P. W. (1996). Imagery and The Development of Mathematical Reasoning. Dalam L. P. Steffe, B. Greer, P. Nesher, P. Cobb, & G. Goldin (Ed.), Theories of Learning Mathematics (267-283). Hillsdale,N J: Erlbaum.
Toulmin, S. (2003). The Uses of Argument (Updated Edition). UK: Cambridge University Press.
Yackel, E. (2002). What We Can Learn From Analyzing The Teacher‟s Role in Collective Argumentation. Journal of Mathematical Behavior, 21, 423-440.
Downloads
Published
Issue
Section
License
All information and contents of articles contained in JMPM: Jurnal Matematika dan Pendidikan Matematika are free to read, download, print, copy, or share with various legal purposes.
The formal legal aspect of access to any information and articles contained in this journal website refers to the Creative Commons Attribution 4.0 International (CC BY 4.0) license terms.